【題目】若關(guān)于x的不等式ax2+bx+c>0的解集為{x|﹣1<x<2},則關(guān)于x的不等式cx2+bx+a>0的解集是

【答案】
【解析】解:∵關(guān)于x的不等式ax2+bx+c>0的解集為{x|﹣1<x<2},
∴a<0,且﹣1+2=﹣ ,﹣1×2=
∴b=﹣a>0,c=﹣2a>0,∴ =﹣ , =
故關(guān)于x的不等式cx2+bx+a>0,即 x2+ x﹣ >0,即 (x+1)(x﹣ )>0,
故x<﹣1,或 x> ,故關(guān)于x的不等式cx2+bx+a>0的解集是 ,
故答案為
由條件可得 a<0,且﹣1+2=﹣ ,﹣1×2= . b=﹣a>0,c=﹣2a>0,可得要解得不等式即x2+ x﹣ >0,由此求得它的解集.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,2cos(A﹣C)+cos2B=1+2cosAcosC.
(1)求證:a,b,c依次成等比數(shù)列;
(2)若b=2,求u=| |的最小值,并求u達(dá)到最小值時(shí)cosB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(cos x,sin x), =(cos ,﹣sin ),且x∈[﹣ ]
(1)求 及| + |;
(2)若f(x)= ﹣| + |,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:β∈(0, ),α∈( , )且cos( ﹣α)= ,sin( +β)= ,求:cosα,cos(α+β)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015男籃亞錦賽決賽階段,中國(guó)男籃以連勝的不敗成績(jī)贏得第屆亞錦賽冠軍,同時(shí)拿到亞洲唯一張直通里約奧運(yùn)會(huì)的入場(chǎng)券.賽后,中國(guó)男籃主力易建聯(lián)榮膺本屆亞錦賽(最有價(jià)值球員),下表是易建聯(lián)在這場(chǎng)比賽中投籃的統(tǒng)計(jì)數(shù)據(jù).

比分

易建聯(lián)技術(shù)統(tǒng)計(jì)

投籃命中

罰球命中

全場(chǎng)得分

真實(shí)得分率

中國(guó)新加坡

中國(guó)韓國(guó)

中國(guó)約旦

中國(guó)哈薩克斯坦

中國(guó)黎巴嫩

中國(guó)卡塔爾

中國(guó)印度

中國(guó)伊朗

中國(guó)菲律賓

注:(1)表中表示出手次命中次;

(2)(真實(shí)得分率)是衡量球員進(jìn)攻的效率,其計(jì)算公式為:

(1)從上述場(chǎng)比賽中隨機(jī)選擇一場(chǎng),求易建聯(lián)在該場(chǎng)比賽中超過(guò)的概率;

(2)我們把比分分差不超過(guò)分的比賽稱(chēng)為“膠著比賽”.為了考驗(yàn)求易建聯(lián)在“膠著比賽”中的發(fā)揮情況,從“膠著比賽”中隨機(jī)選擇兩場(chǎng),求易建聯(lián)在這兩場(chǎng)比賽中至少有一場(chǎng)超過(guò)的概率;

(3)用來(lái)表示易建聯(lián)某場(chǎng)的得分,用來(lái)表示中國(guó)隊(duì)該場(chǎng)的總分,畫(huà)出散點(diǎn)圖如圖所示,請(qǐng)根據(jù)散點(diǎn)圖判斷之間是否具有線性相關(guān)關(guān)系?結(jié)合實(shí)際簡(jiǎn)單說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合A={x|x2﹣2ax+a=0,x∈R},B={x|x2﹣4x+a+5=0,x∈R},若A和B中有且僅有一個(gè)是,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)y=sinx的圖象上所有的點(diǎn)向右平行移動(dòng) 個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),所得圖象的函數(shù)解析式是(
A.y=sin(2x﹣
B.y=sin(2x+
C.y=sin( x﹣
D.y=sin( x﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)).

 。1)若函數(shù)是單調(diào)函數(shù),求的取值范圍;

2)求證:當(dāng)時(shí),都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知圓O的直徑AB長(zhǎng)度為4,點(diǎn)D為線段AB上一點(diǎn),且 ,點(diǎn)C為圓O上一點(diǎn),且 .點(diǎn)P在圓O所在平面上的正投影為點(diǎn)D,PD=BD.

(1)求證:CD⊥平面PAB;
(2)求點(diǎn)D到平面PBC的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案