【題目】某中學(xué)為了普及奧運(yùn)會知識和提高學(xué)生參加體育運(yùn)動(dòng)的積極性,舉行了一次奧運(yùn)知識競賽.隨機(jī)抽取了30名學(xué)生的成績,繪成如圖所示的莖葉圖,若規(guī)定成績在75分以上(包括75分)的學(xué)生定義為甲組,成績在75分以下(不包括75分)定義為乙組.
(Ⅰ)在這30名學(xué)生中,甲組學(xué)生中有男生7人,乙組學(xué)生中有女生12人,試問有沒有90%的把握認(rèn)為成績分在甲組或乙組與性別有關(guān);
(Ⅱ)記甲組學(xué)生的成績分別為x1 , x2 , …,x12 , 執(zhí)行如圖所示的程序框圖,求輸出的S的值;
(Ⅲ)競賽中,學(xué)生小張、小李同時(shí)回答兩道題,小張答對每道題的概率均為 ,小李答對每道題的概率均為 ,兩人回答每道題正確與否相互獨(dú)立.記小張答對題的道數(shù)為a,小李答對題的道數(shù)為b,X=|a﹣b|,寫出X的概率分布列,并求出X的數(shù)學(xué)期望.
附:K2= ;其中n=a+b+c+d
獨(dú)立性檢驗(yàn)臨界表:
P(K2>k0) | 0.100 | 0.050 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
【答案】解:(Ⅰ)作出2×2列聯(lián)表:
甲組 | 乙組 | 合計(jì) | |
男生 | 7 | 6 | 13 |
女生 | 5 | 12 | 17 |
合計(jì) | 12 | 18 | 30 |
由列聯(lián)表數(shù)據(jù)代入公式,計(jì)算得K2= = ≈1.83,
因?yàn)?.83<2.706,故沒有90%的把握認(rèn)為成績分在甲組或乙組與性別有關(guān);
(Ⅱ)根據(jù)程序運(yùn)行的過程,得出該程序運(yùn)行后輸出的是求甲組數(shù)據(jù)的平均數(shù),
所以輸出S= ×(75+75+76+76+78+80+81+81+82+84+87+91)=80.5;
(Ⅲ)由已知得X的可能取值為0,1,2,
P(X=0)=(1﹣ )(1﹣ )(1﹣ )+ (1﹣ ) = ,
P(X=1)= (1﹣ )(1﹣ )+(1﹣ )(1﹣ ) + = ,
P(X=2)= (1﹣ )= ,
∴X的分布列為:
X | 0 | 1 | 2 |
P |
X的數(shù)學(xué)期望值為EX=0× +1× +2× =
【解析】(Ⅰ)作2×2列聯(lián)表,計(jì)算K2 , 對照數(shù)表即可得出結(jié)論;(Ⅱ)根據(jù)程序運(yùn)行的過程,得出該程序運(yùn)行后輸出的是求平均數(shù),求出即可;(Ⅲ)由已知得X的可能取值,計(jì)算對應(yīng)的概率值,寫出X的分布列,計(jì)算數(shù)學(xué)期望值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用離散型隨機(jī)變量及其分布列的相關(guān)知識可以得到問題的答案,需要掌握在射擊、產(chǎn)品檢驗(yàn)等例子中,對于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡稱分布列.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,a1=1,a2=3對任意n∈N* , an+2≤an+32n , an+1≥2an+1都成立,則a2016=
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若a和b是計(jì)算機(jī)在區(qū)間(0,2)上產(chǎn)生的均勻隨機(jī)數(shù),則一元二次不等式ax2+4x+4b>0(a>0)的解集不是R的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表作,其中《方田》章給出計(jì)算弧田面積所用的經(jīng)驗(yàn)方式為:弧田面積=(弦×矢+矢2),弧田(如圖)由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差,現(xiàn)有圓心角為,半徑等于米的弧田,按照上述經(jīng)驗(yàn)公式計(jì)算所得弧田面積約是
A. 平方米 B. 平方米
C. 平方米 D. 平方米
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定集合A={a1 , a2 , a3 , …,an}(n∈N* , n≥3)中,定義ai+aj(1≤i<j≤n,i,j∈N*)中所有不同值的個(gè)數(shù)為集合A兩元素和的容量,用L(A)表示.若數(shù)列{an}是公差不為0的等差數(shù)列,設(shè)集合A={a1 , a2 , a3 , …,a2016},則L(A)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,平行四邊形ABCD中,AB=2AD,∠DAB=60°,M是BC的中點(diǎn).將△ADM沿DM折起,使面ADM⊥面MBCD,N是CD的中點(diǎn),圖2所示.
(Ⅰ)求證:CM⊥平面ADM;
(Ⅱ)若P是棱AB上的動(dòng)點(diǎn),當(dāng) 為何值時(shí),二面角P﹣MC﹣B的大小為60°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,.
(1)求△ABM與△ABC的面積之比;
(2)若N為AB中點(diǎn),與交于點(diǎn)P,且 (x,y∈R),求x+y的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△ACD中,∠ACB=∠ADC=90°,∠BAC=∠CAD,⊙O是以AB為直徑的圓,DC的延長線與AB的延長線交于點(diǎn)E.
(Ⅰ)求證:DC是⊙O的切線;
(Ⅱ)若EB=6,EC=6 ,求BC的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A={x|2x2+ax+2=0},B={x|x2+3x+2a=0},A∩B={2}.
(1)求a的值及集合A、B;
(2)設(shè)集合U=A∪B,求(CuA)∪(CuB)的所有子集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com