【題目】下列命題:
①對(duì)立事件一定是互斥事件;②若A,B為兩個(gè)隨機(jī)事件,則P(A∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,則P(A)+P(B)+P(C)=1;④若事件A,B滿足P(A)+P(B)=1,則A與B是對(duì)立事件.
其中正確命題的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
【答案】A
【解析】
根據(jù)互斥之間和對(duì)立事件的概念,及互斥事件和對(duì)立事件的關(guān)系和概率的計(jì)算,即可作出判斷,得到答案.
由題意①中,根據(jù)對(duì)立事件與互斥事件的關(guān)系,可得是正確;②中,當(dāng)A與B是互斥事件時(shí),才有P(A∪B)=P(A)+P(B),對(duì)于任意兩個(gè)事件A,B滿足P(A∪B)=P(A)+P(B)-P(AB),所以是不正確的;③也不正確.P(A)+P(B)+P(C)不一定等于1,還可能小于1;④也不正確.例如:袋中有大小相同的紅、黃、黑、綠4個(gè)球,從袋中任摸一個(gè)球,設(shè)事件A={摸到紅球或黃球},事件B={摸到黃球或黑球},顯然事件A與B不互斥,但P(A)+P(B)=+=1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最小正周期是,且當(dāng)時(shí),取得最大值3.
(1)求的解析式及單調(diào)增區(qū)間;
(2)若,且,求;
(3)將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,且是偶函數(shù),求m的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如下圖,△ACB和△DCE均為等邊三角形,點(diǎn)A、D、E在同一直線上,連接BE。
填空:①∠AEB的度數(shù)為____________;
②線段AD、BE之間的數(shù)量關(guān)系是_________。
(2)拓展探究
如下圖,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=900, 點(diǎn)A、D、E在同一直線上,CM為△DCE中DE邊上的高,連接BE。請(qǐng)判斷∠AEB的度數(shù)及線段CM、AE、BE之間的數(shù)量關(guān)系,并說明理由。
(3)解決問題
如下圖,在正方形ABCD中,CD=。若點(diǎn)P滿足PD=1,且∠BPD=900,請(qǐng)直接寫出點(diǎn)A到BP的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足0<an<1,且an+1+ =2an+ (n∈N*).
(1)證明:an+1<an;
(2)若a1= ,設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 證明: ﹣ <Sn< ﹣2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中, , , , 分別為, 的中點(diǎn).將沿折起到的位置,使,如圖2,連結(jié), .
(Ⅰ)求證:平面 平面;
(Ⅱ)若為中點(diǎn),求直線與平面所成角的正弦值;
(Ⅲ)線段上是否存在一點(diǎn),使二面角的余弦值為?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,四邊形為菱形, , 底面, 為直線上一動(dòng)點(diǎn).
(Ⅰ)求證: ;
(Ⅱ)若, 分別為線段, 的中點(diǎn),求證: 平面;
(Ⅲ)直線上是否存在點(diǎn),使得平面平面?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2,則異面直線EF與BC所成角大小為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com