解答:解:(1)函數(shù)的定義域?yàn)椋?,+∞),當(dāng)a=-1時(shí),
f(x)=lnx+x+-1,f′(x)=,
由f'(x)>0,解得x>1,此時(shí)函數(shù)f(x)單調(diào)遞增.
由f'(x)<0,解得0<x<1,此時(shí)函數(shù)f(x)單調(diào)遞減.
所以函數(shù)f(x)的單調(diào)遞增區(qū)間是[1,+∞),單調(diào)遞減區(qū)間為(0,1].
(2)因?yàn)閒(x)=lnx-ax+
-1(a∈R).
所以
f′(x)=-a+=-,
令g(x)=ax
2-x+1-a,(x>0),
①若a=0,g(x)=-x+1,當(dāng)x∈(0,1)時(shí),g(x)>0,此時(shí)f'(x)<0,此時(shí)f(x)單調(diào)遞減.
當(dāng)x∈(1,+∞)時(shí),g(x)<0,此時(shí)f'(x)>0,此時(shí)f(x)單調(diào)遞增.
②若0
<a<時(shí),由f'(x)=0,解得
x1=1,x2=-1,
此時(shí)
-1>1>0,所以當(dāng)x∈(0,1)時(shí),g(x)>0,此時(shí)f'(x)<0,此時(shí)f(x)單調(diào)遞減.
當(dāng)x∈(1,
-1)時(shí),g(x)<0,此時(shí)f'(x)>0,此時(shí)f(x)單調(diào)遞增.
當(dāng)x∈(
-1,+∞)時(shí),g(x)>0,此時(shí)f'(x)<0,此時(shí)f(x)單調(diào)遞減.
綜上所述,當(dāng)a=0時(shí),函數(shù)f(x)單調(diào)遞減區(qū)間是(0,1),單調(diào)增區(qū)間是(1,+∞).
當(dāng)0
<a<時(shí),函數(shù)f(x)單調(diào)遞減區(qū)間是(0,1)和[
-1,+∞),單調(diào)增區(qū)間是[1,
-1].