【題目】已知函數(shù)(其中為自然對(duì)數(shù)的底數(shù)).
(1)若,求函數(shù)在區(qū)間上的最大值;
(2)若,關(guān)于的方程有且僅有一個(gè)根, 求實(shí)數(shù)的取值范圍;
(3)若對(duì)任意,不等式均成立, 求實(shí)數(shù)的取值范圍.
【答案】(1);(2);(3).
【解析】試題(Ⅰ)求出函數(shù)的導(dǎo)數(shù),得到函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最大值即可;(Ⅱ)若a=-1,關(guān)于x的方程f(x)=kg(x)有且僅有一個(gè)根,即,有且只有一個(gè)根,令,可得h(x)極大=h(2)=,h(x)極小=h(1)=,進(jìn)而可得當(dāng)k>或0<k<時(shí),k=h(x)有且只有一個(gè)根;(Ⅲ)設(shè),因?yàn)?/span>在[0,2]單調(diào)遞增,故原不等式等價(jià)于|f(x1)-f(x2)|<g(x2)-g(x1)在x1、x2∈[0,2],且x1<x2恒成立,當(dāng)a≥-(ex+2x)恒成立時(shí),a≥-1;當(dāng)a≤ex-2x恒成立時(shí),a≤2-2ln2,綜合討論結(jié)果,可得實(shí)數(shù)a的取值范圍
試題解析:(1)當(dāng)時(shí),, 故在上單調(diào)遞減,上單調(diào)遞增, 當(dāng)時(shí),, 當(dāng)時(shí),, 故在區(qū)間上.
(2)當(dāng)時(shí), 關(guān)于的方程為有且僅有一個(gè)實(shí)根, 則有且僅有一個(gè)實(shí)根, 設(shè),則,
因此在和上單調(diào)遞減, 在上單調(diào)遞增,, 如圖所示, 實(shí)數(shù)的取值范圍是.
(3)不妨設(shè),則恒成立.
因此恒成立, 即恒成立,
且恒成立, 因此和均在上單調(diào)遞增,
設(shè),
則在上上恒成立, 因此在上恒成立因此,而在上單調(diào)遞減, 因此時(shí),.由在上恒成立, 因此在上恒成立, 因此,設(shè),則.當(dāng)時(shí),, 因此在內(nèi)單調(diào)遞減, 在內(nèi)單調(diào)遞增,因此.綜上述,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)時(shí),求函數(shù)在上區(qū)間零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:“曲線C1:=1表示焦點(diǎn)在x軸上的橢圓”,命題q:“曲線C2:表示雙曲線”.
(1)若命題p是真命題,求m的取值范圍;
(2)若p是q的必要不充分條件,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn),點(diǎn),為拋物線上一點(diǎn),且不在直線上,則周長(zhǎng)取最小值時(shí),線段的長(zhǎng)為( )
A. 1B. C. 5D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè).
討論的單調(diào)區(qū)間;
當(dāng)時(shí),在上的最小值為,求在上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2lnx﹣2mx+x2(m>0).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)時(shí),若函數(shù)f(x)的導(dǎo)函數(shù)f′(x)的圖象與x軸交于A,B兩點(diǎn),其橫坐標(biāo)分別為x1,x2(x1<x2),線段AB的中點(diǎn)的橫坐標(biāo)為x0,且x1,x2恰為函數(shù)h(x)=lnx﹣cx2﹣bx的零點(diǎn).求證(x1﹣x2)h'(x0)≥+ln2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出以下四個(gè)命題:
(1)命題,使得,則,都有;
(2)已知函數(shù)f(x)=|log2x|,若a≠b,且f(a)=f(b),則ab=1;
(3)若平面α內(nèi)存在不共線的三點(diǎn)到平面β的距離相等,則平面α平行于平面β;
(4)已知定義在上的函數(shù) 滿足條件 ,且函數(shù) 為奇函數(shù),則函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱.
其中真命題的序號(hào)為______________.(寫(xiě)出所有真命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線.
(1)若直線不經(jīng)過(guò)第四象限,求的取值范圍;
(2)若直線交軸負(fù)半軸于點(diǎn),交軸正半軸于點(diǎn),為坐標(biāo)原點(diǎn),設(shè)的面積為,求的最小值及此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某花圃為提高某品種花苗質(zhì)量,開(kāi)展技術(shù)創(chuàng)新活動(dòng),在實(shí)驗(yàn)地分別用甲、乙方法培訓(xùn)該品種花苗.為觀測(cè)其生長(zhǎng)情況,分別在實(shí)驗(yàn)地隨機(jī)抽取各株,對(duì)每株進(jìn)行綜合評(píng)分,將每株所得的綜合評(píng)分制成如圖所示的頻率分布直方圖.記綜合評(píng)分為及以上的花苗為優(yōu)質(zhì)花苗.
求圖中的值,并求綜合評(píng)分的中位數(shù).
用樣本估計(jì)總體,以頻率作為概率,若在兩塊試驗(yàn)地隨機(jī)抽取棵花苗,求所抽取的花苗中的優(yōu)質(zhì)花苗數(shù)的分布列和數(shù)學(xué)期望;
填寫(xiě)下面的列聯(lián)表,并判斷是否有的把握認(rèn)為優(yōu)質(zhì)花苗與培育方法有關(guān).
附:下面的臨界值表僅供參考.
(參考公式:,其中.)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com