【題目】對(duì)于無窮數(shù)列,,記,,若同時(shí)滿足條件①,均單調(diào)遞增;②且,則稱,是無窮互補(bǔ)數(shù)列.
(1)若,,試判斷數(shù)列,是否為無窮互補(bǔ)數(shù)列,并說明理由;
(2)若,且,是無窮互補(bǔ)數(shù)列,求數(shù)列前項(xiàng)的和.
【答案】(1)見解析(2)
【解析】
(1)數(shù)列表示所有的正偶數(shù),而數(shù)列不能表示所有正奇數(shù),即可得出結(jié)論;
(2)數(shù)列的前30項(xiàng)是的所有整數(shù),除去之后剩下的整數(shù),利用等差數(shù)列和等比數(shù)列的求和公式,分組求和,即可得出答案.
(1)數(shù)列,不是無窮互補(bǔ)數(shù)列,理由如下
數(shù)列為遞增數(shù)列,且表示所有的正偶數(shù)
令,解得,則數(shù)列,不是無窮互補(bǔ)數(shù)列
(2)數(shù)列的前7項(xiàng)分別為
因?yàn)?/span>,是無窮互補(bǔ)數(shù)列,所以數(shù)列的前30項(xiàng)是的所有整數(shù),除去之后剩下的整數(shù)
則數(shù)列前項(xiàng)的和為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知().
(Ⅰ)判斷當(dāng)時(shí)的單調(diào)性;
(Ⅱ)若,()為兩個(gè)極值點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),若在上有零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了讓居民了解垃圾分類,養(yǎng)成垃圾分類的習(xí)慣,讓綠色環(huán)保理念深入人心.某市將垃圾分為四類:可回收物,餐廚垃圾,有害垃圾和其他垃圾.某班按此四類由10位同學(xué)組成四個(gè)宣傳小組,其中可回收物與餐廚垃圾宣傳小組各有2位同學(xué),有害垃圾與其他垃圾宣傳小組各有3位同學(xué).現(xiàn)從這10位同學(xué)中選派5人到某小區(qū)進(jìn)行宣傳活動(dòng),則每個(gè)宣傳小組至少選派1人的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中“勾股容方”問題:“今有勾五步,股十二步,問勾中容方幾何?”魏晉時(shí)期數(shù)學(xué)家劉徽在其《九章算術(shù)注》中利用出入相補(bǔ)原理給出了這個(gè)問題的一般解法:如圖1,用對(duì)角線將長和寬分別為和的矩形分成兩個(gè)直角三角形,每個(gè)直角三角形再分成一個(gè)內(nèi)接正方形(黃)和兩個(gè)小直角三角形(朱、青).將三種顏色的圖形進(jìn)行重組,得到如圖2所示的矩形.該矩形長為,寬為內(nèi)接正方形的邊長.由劉徽構(gòu)造的圖形還可以得到許多重要的結(jié)論,如圖3.設(shè)為斜邊的中點(diǎn),作直角三角形的內(nèi)接正方形對(duì)角線,過點(diǎn)作于點(diǎn),則下列推理正確的是( )
①由圖1和圖2面積相等得;
②由可得;
③由可得;
④由可得.
A.①②③④B.①②④C.②③④D.①③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于數(shù)列,若存在常數(shù)M,使得對(duì)任意,與中至少有一個(gè)不小于M,則記作,那么下列命題正確的是( ).
A.若,則數(shù)列各項(xiàng)均大于或等于M;
B.若,則;
C.若,,則;
D.若,則;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面是正方形,頂點(diǎn)在底面的射影是底面的中心,且各頂點(diǎn)都在同一球面上,若該四棱錐的側(cè)棱長為,體積為4,且四棱錐的高為整數(shù),則此球的半徑等于( )(參考公式:)
A. 2B. C. 4D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P(x,y)是平面內(nèi)的動(dòng)點(diǎn),定點(diǎn)F(1,0),定直線l:x=﹣1與x軸交于點(diǎn)E,過點(diǎn)P作PQ⊥l于點(diǎn)Q,且滿足 .
(1)求動(dòng)點(diǎn)P的軌跡t的方程;
(2)過點(diǎn)F作兩條互相垂直的直線,分別交曲線t于點(diǎn)A,B,和點(diǎn)C,D.設(shè)線段AB和線段CD的中點(diǎn)分別為M和N,記線段MN的中點(diǎn)為K,點(diǎn)O為坐標(biāo)原點(diǎn),求直線OK的斜率k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com