已知橢圓C1的中心和拋物線C2的頂點都在原點,且兩曲線的焦點均在x軸上,若A(1,2),B(2,0),C(
2
2
2
)
中有兩點在橢圓C1上,另一點在拋物線C2上.
(Ⅰ)求橢圓C1和拋物線C2的方程;
(Ⅱ)設(shè)直線l與橢圓C1交于M,N兩點,與拋物線C2交于P,Q兩點.問是否存在直線l使得以線段MN為直徑的圓和以線段PQ為直徑的圓都過原點?若存在,求出直線l的方程;若不存在,請說明理由.
分析:(I)拋物線方程為y2=2px,橢圓方程為
x2
a2
+
y2
b2
=1
,根據(jù)拋物線頂點在原點斷定B點必不在拋物線上,進而可把B代入橢圓方程求得a;把A和C點分別代入橢圓方程求得b(注意驗證b是否符合),進而通過另一個點求得p,答案可得.
(II)設(shè)直線l:x=my+n,將x=my+n代入橢圓方程消去x后,根據(jù)△>0得出m和n的關(guān)系式,設(shè)M(x1,y1),N(x2,y2),由OM⊥ON得,x1x2+y!y2=0,進而得到m和n的另一個關(guān)系式,將x=
y2
4
代入x=my+n根據(jù)△>0得m2+n>0再由OP⊥OQ得得n2-4n=0聯(lián)立方程求得m和n,最后經(jīng)驗證m和n都符合題意,進而可得結(jié)論.
解答:精英家教網(wǎng)解:(I)設(shè)拋物線方程為y2=2px,橢圓方程為
x2
a2
+
y2
b2
=1

∵拋物線頂點在原點
∴B點不可能在拋物線上,則在橢圓上代入橢圓方程得
4
a2
+0=1
,解得a=2
如果c點在橢圓上,代入橢圓方程得
2
4
+
1
2
b2
=1
,解得b=1符合題意
則橢圓的方程為
x2
4
+y2=1

∴點A必在拋物線上,代入拋物線方程得2p=4
∴p=2
∴拋物線方程為:y2=4x.

(II)若存在直線l使得以線段MN為直徑的圓和以PQ為直徑的圓都過原點,
設(shè)直線l:x=my+n,將x=my+n代入橢圓C1
x2
4
+y2=1
,并整理得,(m2+4)y2+2mny+n2-4=0,
1=4m2n2-4(m2+4)(n2-4)>0,即m2-n2+4>0;=1 ①
設(shè)M(x1,y1),N(x2,y2),則y1+y2=
-2mn
m2+4
,y1y2=
n2-4
m2+4
,
由OM⊥ON得,x1x2+y!y2=0,即(m2+1)y!y2+mn(y1+y2)+n2=0,
(m2+1)
n2-4
m2+4
+mn•
-2mn
m2+4
+n2=0
,得5n2-4m2-4=0;②
x=
y2
4
代入x=my+n,得
y2
4
-my-n=0
,△2=m2+n>0,③
設(shè)P(x3,y3),Q(x4,y4),則y3+y4=4m,y3y4=-4n,
由OP⊥OQ得,x3x4+y3y4=0,即(m2+1)y3y4+mn(y3+y4)+n2=0,
∴(m2+1)(-4n)+mn•4m+n2=0,得n2-4n=0;
顯然n≠0,∴n=4,代入②得:m=±
19
;
經(jīng)檢驗m=±
19
,n=4都適合 ①③式.
所以存在直線l:x±
19
y-4=0
使得以線段MN為直徑和以PQ為直徑的圓都過原點.
點評:本題主要考查直線、橢圓和拋物線等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查數(shù)形結(jié)合思想和化歸與轉(zhuǎn)化思想等
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C1的中心和拋物線C2的頂點都在坐標原點O,C1和C2有公共焦點F,點F在x軸正半軸上,且C1的長軸長、短軸長及點F到C1右準線的距離成等比數(shù)列.
(Ⅰ)當C2的準線與C1右準線間的距離為15時,求C1及C2的方程;
(Ⅱ)設(shè)過點F且斜率為1的直線l交C1于P,Q兩點,交C2于M,N兩點.當|MN|=8時,求|PQ|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C1的中心和拋物線C2的頂點都在坐標原點O,C1和C2有公共焦點F,點F在x軸正半軸上,且C1的長軸長、短軸長及點F到C1右準線的距離成等比數(shù)列.
(Ⅰ)當C2的準線與C1右準線間的距離為15時,求C1及C2的方程;
(Ⅱ)設(shè)點F且斜率為1的直線l交C1于P,Q兩點,交C2于M,N兩點.當|PQ|=
367
時,求|MN|的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2008年四川省高考數(shù)學試卷(文科)延考卷(解析版) 題型:解答題

已知橢圓C1的中心和拋物線C2的頂點都在坐標原點O,C1和C2有公共焦點F,點F在x軸正半軸上,且C1的長軸長、短軸長及點F到C1右準線的距離成等比數(shù)列.
(Ⅰ)當C2的準線與C1右準線間的距離為15時,求C1及C2的方程;
(Ⅱ)設(shè)過點F且斜率為1的直線l交C1于P,Q兩點,交C2于M,N兩點.當|MN|=8時,求|PQ|的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2008年四川省高考數(shù)學試卷(理科)延考卷(解析版) 題型:解答題

已知橢圓C1的中心和拋物線C2的頂點都在坐標原點O,C1和C2有公共焦點F,點F在x軸正半軸上,且C1的長軸長、短軸長及點F到C1右準線的距離成等比數(shù)列.
(Ⅰ)當C2的準線與C1右準線間的距離為15時,求C1及C2的方程;
(Ⅱ)設(shè)點F且斜率為1的直線l交C1于P,Q兩點,交C2于M,N兩點.當時,求|MN|的值.

查看答案和解析>>

同步練習冊答案