已知點(diǎn)A、B分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)長軸的左、右端點(diǎn),點(diǎn)C是橢圓短軸的一個(gè)端點(diǎn),且離心率e=
6
3
,S△ABC=
3

(1)求橢圓方程;
(2)設(shè)直線l經(jīng)過橢圓的右焦點(diǎn),且與橢圓相交于P、Q兩點(diǎn),求線段PQ的中點(diǎn)到原點(diǎn)的距離等于
1
2
|PQ|
時(shí)的直線方程.
分析:(1)利用橢圓的離心率e=
6
3
,S△ABC=
3
,建立方程組,求出幾何量,即可得出橢圓的方程;
(2)分類討論,直線方程與橢圓方程聯(lián)立,利用OP⊥OQ,結(jié)合韋達(dá)定理,即可得到結(jié)論.
解答:解:(1)∵橢圓的離心率e=
6
3
,S△ABC=
3

c
a
=
6
3
1
2
×2a×b=
3

a=
3
,b=1,c=
2

∴所求橢圓的方程為
x2
3
+y2=1
;
(2)當(dāng)直線l的斜率不存在時(shí),l的方程為x=
2
,代入橢圓方程,可得y=±
3
3
,∴|PQ|=
2
3
3

而線段PQ的中點(diǎn)到原點(diǎn)的距離等于
2
,不合題意;
當(dāng)直線l的斜率存在時(shí),l的方程為y=k(x-
2
),則OP⊥OQ
直線方程與橢圓方程聯(lián)立,可得(1+3k2)x2-6
2
k2
x+6k2-3=0.
設(shè)P(x1,y1)、Q(x2,y2),則x1+x2=
6
2
k2
1+3k2
,x1x2=
6k2-3
1+3k2

∴x1x2+y1y2=
5k2-3
1+3k2
=0
∴k=±
15
5

∴直線l的方程為y=
15
5
(x-
2
)或y=-
15
5
(x-
2
).
點(diǎn)評:本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,考查分類討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•懷化三模)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
過點(diǎn)(
3
,
3
2
)
,離心率e=
1
2
,若點(diǎn)M(x0,y0)在橢圓C上,則點(diǎn)N(
x0
a
y0
b
)
稱為點(diǎn)M的一個(gè)“橢點(diǎn)”,直線l交橢圓C于A、B兩點(diǎn),若點(diǎn)A、B的“橢點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O.
(1)求橢圓C的方程;
(2)若橢圓C的右頂點(diǎn)為D,上頂點(diǎn)為E,試探究△OAB的面積與△ODE的面積的大小關(guān)系,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:懷化三模 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
過點(diǎn)(
3
,
3
2
)
,離心率e=
1
2
,若點(diǎn)M(x0,y0)在橢圓C上,則點(diǎn)N(
x0
a
y0
b
)
稱為點(diǎn)M的一個(gè)“橢點(diǎn)”,直線l交橢圓C于A、B兩點(diǎn),若點(diǎn)A、B的“橢點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O.
(1)求橢圓C的方程;
(2)若橢圓C的右頂點(diǎn)為D,上頂點(diǎn)為E,試探究△OAB的面積與△ODE的面積的大小關(guān)系,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年湖南省懷化市高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:解答題

已知橢圓過點(diǎn),離心率,若點(diǎn)M(x,y)在橢圓C上,則點(diǎn)稱為點(diǎn)M的一個(gè)“橢點(diǎn)”,直線l交橢圓C于A、B兩點(diǎn),若點(diǎn)A、B的“橢點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O.
(1)求橢圓C的方程;
(2)若橢圓C的右頂點(diǎn)為D,上頂點(diǎn)為E,試探究△OAB的面積與△ODE的面積的大小關(guān)系,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年黑龍江省哈爾濱三中高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知橢圓過點(diǎn),離心率,若點(diǎn)M(x,y)在橢圓C上,則點(diǎn)稱為點(diǎn)M的一個(gè)“橢點(diǎn)”,直線l交橢圓C于A、B兩點(diǎn),若點(diǎn)A、B的“橢點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O.
(1)求橢圓C的方程;
(2)若橢圓C的右頂點(diǎn)為D,上頂點(diǎn)為E,試探究△OAB的面積與△ODE的面積的大小關(guān)系,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年黑龍江省哈爾濱三中高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知橢圓過點(diǎn),離心率,若點(diǎn)M(x,y)在橢圓C上,則點(diǎn)稱為點(diǎn)M的一個(gè)“橢點(diǎn)”,直線l交橢圓C于A、B兩點(diǎn),若點(diǎn)A、B的“橢點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O.
(1)求橢圓C的方程;
(2)若橢圓C的右頂點(diǎn)為D,上頂點(diǎn)為E,試探究△OAB的面積與△ODE的面積的大小關(guān)系,并證明.

查看答案和解析>>

同步練習(xí)冊答案