【題目】某校設(shè)計(jì)了一個實(shí)驗(yàn)考察方案:考生從6道備選題中隨機(jī)抽取3道題,按照題目要求獨(dú)立完成全部實(shí)驗(yàn)操作,規(guī)定:至少正確完成其中的2道題便可通過.已知6道備選題中考生甲有4道能正確完成,2道題不能完成;考生乙每題正確完成的概率都是,且每題正確完成與否互不影響.
(Ⅰ)求甲考生通過的概率
(Ⅱ)求甲乙兩考生正確完成題數(shù)的概率分布列和數(shù)學(xué)期望;
【答案】(Ⅰ)(Ⅱ)分布列都見解析,期望都是2
【解析】
(Ⅰ)答對兩題能通過,可求其反而只答對一題,即甲是選取了兩道不會做的題,用對立事件概率公式計(jì)算;
(Ⅱ)甲考生正確完成題數(shù)的可能取值為1,2,3,乙考生正確完成題數(shù)的可能取值為0,1,2,3,分別計(jì)算概率得概率分布列,由期望公式可計(jì)算期望.
解:(Ⅰ)考生從6道備選題中隨機(jī)抽取3道題,按照題目要求獨(dú)立完成全部實(shí)驗(yàn)操作,
規(guī)定:至少正確完成其中的2道題便可通過.
已知6道備選題中考生甲有4道能正確完成,2道題不能完成,
甲考生通過的概率.
(Ⅱ)由題意知甲考生正確完成題數(shù)的可能取值為1,2,3,
,,
的可能取值為:
X | 1 | 2 | 3 |
P |
.
乙考生正確完成題數(shù)的可能取值為0,1,2,3,
,,
,
的分布列是:
X | 0 | 1 | 2 | 3 |
P |
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司年會舉行抽獎活動,每位員工均有一次抽獎機(jī)會.活動規(guī)則如下:一只盒子里裝有大小相同的6個小球,其中3個白球,2個紅球,1個黑球,抽獎時從中一次摸出3個小球,若所得的小球同色,則獲得一等獎,獎金為300元;若所得的小球顏色互不相同,則獲得二等獎,獎金為200元;若所得的小球恰有2個同色,則獲得三等獎,獎金為100元.
(1)求小張?jiān)谶@次活動中獲得的獎金數(shù)的概率分布及數(shù)學(xué)期望;
(2)若每個人獲獎與否互不影響,求該公司某部門3個人中至少有2個人獲二等獎的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐P﹣ABCD中,PC⊥底面ABCD,PC=CD=2,E為AB的中點(diǎn),底面四邊形ABCD滿足∠ADC=∠DCB=90°,AD=1,BC=3.
(Ⅰ)求證:平面PDE⊥平面PAC;
(Ⅱ)求直線PC與平面PDE所成角的正弦值;
(Ⅲ)求二面角D﹣PE﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某快遞公司有兩種發(fā)放薪水的方案:
方案一:底薪1800元,設(shè)每月送快遞單,提成(單位:元)為
方案二:底薪2000元,設(shè)每月送快遞單,提成(單位:元)為
以下該公司某職工小甲在2019年9月份(30天)送快遞的數(shù)據(jù),
日送快遞單數(shù) | 11 | 13 | 14 | 15 | 16 | 18 |
天數(shù) | 4 | 5 | 12 | 3 | 5 | 1 |
(1)從小甲日送快遞單數(shù)大于15的六天中抽取兩天,求這兩天他送的快遞單數(shù)恰好都為16單的概率.
(2)請你利用所學(xué)的統(tǒng)計(jì)學(xué)知識為小甲9月份選擇合適的發(fā)放薪水的方案,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算機(jī)考試分理論考試與實(shí)際操作兩部分,每部分考試成績只記“合格”與“不合格”,兩部分考試都“合格”者,則計(jì)算機(jī)考試“合格”,并頒發(fā)合格證書甲、乙、丙三人在理論考試中“合格”的概率依次為,,,在實(shí)際操作考試中“合格”的概率依次為,,,所有考試是否合格相互之間沒有影響.
(1)假設(shè)甲、乙、丙三人同時進(jìn)行理論與實(shí)際操作兩項(xiàng)考試,誰獲得合格證書的可能性最大?
(2)這三人進(jìn)行理論與實(shí)際操作兩項(xiàng)考試后,求恰有兩人獲得合格證書的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè),求證:;
(Ⅲ)若對于恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為紀(jì)念“五四運(yùn)動”100周年,某校團(tuán)委舉辦了中國共產(chǎn)主義青年團(tuán)知識宣講活動活動結(jié)束后,校團(tuán)委對甲、乙兩組各10名團(tuán)員進(jìn)行志愿服務(wù)次數(shù)調(diào)查,次數(shù)統(tǒng)計(jì)結(jié)果用莖葉圖記錄如下,乙組記錄中有一個數(shù)據(jù)模糊,無法確認(rèn),在圖中以表示.
(1)若甲組服務(wù)次數(shù)的平均值不小于乙組服務(wù)次數(shù)的平均值,求圖中所有可能的取值;
(2)團(tuán)委決定對甲、乙兩組中服務(wù)次數(shù)超過15次的團(tuán)員授予“優(yōu)秀志愿者”稱號設(shè),現(xiàn)從所有“優(yōu)秀志愿者”里任取3人,求其中乙組的人數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年4月,北京世界園藝博覽會開幕,為了保障園藝博覽會安全順利地進(jìn)行,某部門將5個安保小組全部安排到指定的三個不同區(qū)域內(nèi)值勤,則每個區(qū)域至少有一個安保小組的排法有( )
A.150種B.240種C.300種D.360種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某綜藝節(jié)目為比較甲、乙兩名選手的各項(xiàng)能力(指標(biāo)值滿分為5分,分值高者為優(yōu)),繪制了如圖所示的六維能力雷達(dá)圖,圖中點(diǎn)A表示甲的創(chuàng)造力指標(biāo)值為4,點(diǎn)B表示乙的空間能力指標(biāo)值為3,則下面敘述正確的是
A. 乙的記憶能力優(yōu)于甲的記憶能力
B. 乙的創(chuàng)造力優(yōu)于觀察能力
C. 甲的六大能力整體水平優(yōu)于乙
D. 甲的六大能力中記憶能力最差
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com