已知橢圓的離心率為,過右焦點且斜率為的直線與相交于兩點.若,則(   )
A.1B.C.D.2
B
因為,所以,從而,則橢圓方程為。依題意可得直線方程為,聯(lián)立可得
坐標分別為,則
因為,所以,從而有 ①
再由可得,根據(jù)橢圓第二定義可得,即 ②
由①②可得,所以,則,解得。因為,所以,故選B
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

直線過橢圓的一個焦點和一個頂點,則橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓及以下3個函數(shù):①;②;
,其中函數(shù)圖像能等分該橢圓面積的函數(shù)個數(shù)有……………(     ).
A.0個B.1個 C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.(本小題滿分12分)
設橢圓)經(jīng)過點,其離心率與雙曲線的離心率互為倒數(shù).
(Ⅰ)求橢圓的方程;(注意橢圓的焦點在軸上哦!)
(Ⅱ) 動直線交橢圓兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(13分)已知橢圓的焦點坐標為,長軸等于焦距的2倍.
(1)求橢圓的方程;
(2)矩形的邊軸上,點、落在橢圓上,求矩形繞軸旋轉(zhuǎn)一周后所得圓柱體側(cè)面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

以橢圓的左焦點為焦點,以坐標原點為頂點的拋物線方程為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知橢圓C:的左、右焦點為,其上頂點為.已知是邊長為的正三角形.
(1)求橢圓C的方程;  
(2) 過點任作一直線交橢圓C于
點,記若在線段上取一點使得,試判斷當直線運動時,點是否在某一定直線上運動?若在,請求出該定直線的方程,若不在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

P是橢圓上的點,F(xiàn)1、F2是兩個焦點,則|PF1|·|PF2|的最大值與最小值之差是_____

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓的離心率為,則的值為_____________.

查看答案和解析>>

同步練習冊答案