如圖,為圓的直徑,點(diǎn)、在圓上,,矩形所在的平面與圓所在的平面互相垂直.已知,

(Ⅰ)求證:平面平面;

(Ⅱ)求直線與平面所成角的大小;

(Ⅲ)當(dāng)的長為何值時(shí),平面與平面所成的銳二面角的大小為?

 

【答案】

(Ⅰ)如下(Ⅱ)(Ⅲ)

【解析】

試題分析:(I)證明:平面平面,,

平面平面=,

平面

平面,,

為圓的直徑,,

平面.          

平面平面平面

(II)根據(jù)(Ⅰ)的證明,有平面,

在平面內(nèi)的射影,

因此,為直線與平面所成的角

,四邊形為等腰梯形,

過點(diǎn),交,,則

中,根據(jù)射影定理,得.     

, 與平面所成角的大小為

(Ⅲ)設(shè)中點(diǎn)為,以為坐標(biāo)原點(diǎn),、方向分別為軸、軸、 軸方向建立空間直角坐標(biāo)系(如圖).設(shè),則點(diǎn)的坐標(biāo)為,又

     

設(shè)平面的法向量為,則,

    令,解得,

由(I)可知平面,取平面的一個(gè)法向量為,依題意 與的夾角為

,即,解得

因此,當(dāng)的長為時(shí),平面與平面所成的銳二面角的大小為

考點(diǎn):平面與平面垂直的判定定理;二面角

點(diǎn)評(píng):直線與平面平行、垂直的判定定理是常考知識(shí)點(diǎn)。另求二面角時(shí),一般是結(jié)合向量來求解。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,為圓的直徑,點(diǎn)、在圓上,且,矩形所在的平面和圓所在的平面互相垂直,且,.

(Ⅰ)求證:平面

(Ⅱ)設(shè)的中點(diǎn)為,求證:平面

(Ⅲ)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年湖南省六校高三第二次聯(lián)考數(shù)學(xué)(文)試題 題型:解答題

(本小題滿分12分)如圖,為圓的直徑,點(diǎn)、在圓上,,矩形所在的平面和圓所在的平面互相垂直,且,
(1)求證:平面
(2)設(shè)的中點(diǎn)為,求證:平面
(3)設(shè)平面將幾何體分成的兩個(gè)錐體的體積分別為,,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年陜西省高三第四次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,為圓的直徑,點(diǎn)、在圓上,矩形所在的平面和圓所在的平面互相垂直,且,.

(Ⅰ)求證:平面;

(Ⅱ)求三棱錐的體積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省泉州四校高三第二次聯(lián)考考試文科數(shù)學(xué) 題型:解答題

.(本題滿分12分)如圖,為圓的直徑,點(diǎn)、在圓上,,矩形的邊垂直于圓所在的平面,且,.

(1)求證:平面

(2)設(shè)的中點(diǎn)為,求證:平面;

(3)求三棱錐的體積 .

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省姜堰市二中學(xué)高三學(xué)情調(diào)查數(shù)學(xué)試卷 題型:解答題

(本小題滿分14分)

如圖,為圓的直徑,點(diǎn)、在圓上,且,矩形所在的平面和圓所在的平面互相垂直,且

(1)求證:平面;

(2)設(shè)的中點(diǎn)為,求證:平面;

(3)設(shè)平面將幾何體分成的兩個(gè)錐體的體積分別為,

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案