設(shè)函數(shù)(1) 求的定義域   (2)求函數(shù)的單調(diào)區(qū)間;

(3)已知對任意成立,求實(shí)數(shù)的取值范圍。

解(1)

 (2)     則  列表如下

           

+

0

-

-

單調(diào)增

極大值

單調(diào)減

單調(diào)減

在   兩邊取對數(shù), 得 ,由于所以         (1)由(1)的結(jié)果可知,當(dāng)時(shí),  ,為使(1)式對所有成立,當(dāng)且僅當(dāng),即

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P1(x1,y1)、P2(x2,y2)是函數(shù)f(x)=
2x
2x+
2
圖象上的兩點(diǎn),且
OP
=
1
2
(
OP1
+
OP2
)
,點(diǎn)P的橫坐標(biāo)為
1
2

(1)求證:P點(diǎn)的縱坐標(biāo)為定值,并求出這個定值;
(2)若Sn=
n
i=1
f(
i
n
),n∈N*
,求Sn;
(3)記Tn為數(shù)列{
1
(Sn+
2
)(Sn+1+
2
)
}
的前n項(xiàng)和,若Tn<a(Sn+1+
2
)
對一切n∈N*都成立,試求a的取值范圍.
an-1+1=
an
n

(1+
1
a1
)(1+
1
a2
)(1+
1
a3
)…(1+
1
an
)≤3-
1
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax+
1x+b
(a,b∈Z),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=3.
(Ⅰ)求f(x)的解析式,并判斷函數(shù)y=f(x)的圖象是否為中心對稱圖形?若是,請求其對稱中心;否則說明理由.
(II)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值.
(III) 將函數(shù)y=f(x)的圖象向左平移一個單位后與拋物線y=ax2(a為非0常數(shù))的圖象有幾個交點(diǎn)?(說明理由)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆吉林長春外國語學(xué)校高二下期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

 (本題滿分12分)

設(shè)函數(shù),曲線在點(diǎn)處的切線方程為.

(1)求的解析式;(2)證明:曲線上任一點(diǎn)處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆江蘇南通第三中學(xué)高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

本題滿分16分)

設(shè)函數(shù)曲線在點(diǎn)處的切線方程為 .

 (1)求 的解析式;

 (2)證明:曲線 上任一點(diǎn)處的切線與直線 及直線 所圍成的三角形的面積是一個定值,并求此定值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=的圖象上兩點(diǎn)P1(x1,y1)、p2(x2,y2),若=+),且點(diǎn)P的橫坐標(biāo)為.

(1)求證:P點(diǎn)的縱坐標(biāo)為定值,并求出這個定值;

(2)若Sn=,n∈N*,求Sn

(3)記Tn為數(shù)列{}的前n項(xiàng)和,若Tn<a(Sn+1+2)對一切n∈N*都成立.試求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案