(本小題滿分15分)
如圖,在四棱錐中,底面為正方形,平面,已知,為線段上的動點.

(Ⅰ)若的中點,求證:平面;
(Ⅱ)若二面角與二面角的大小相等,求長.
證明:(Ⅰ)連結(jié)交于,連,如圖1

中點,中點,,
平面,平面,
平面.………………6分
(Ⅱ)如圖2,過,過
,連結(jié),同理過,過,連結(jié)

平面,平面,
,,
平面,
平面,平面,,
平面平面,
,平面, 為二面角的平面角,
同理,為二面角的平面角,
,,又
,而
,,,又,
.……15分
解法二:
(Ⅱ)平面,平面,

,,
平面,
平面,如圖3建立坐標(biāo)系,
,,,
,
設(shè)平面,且,由
設(shè)平面,且,

設(shè)平面,且,

設(shè)二面角的大小為,二面角的大小為,
,
.………15分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,四棱錐的底面為菱形,平面,,
分別為的中點,

(Ⅰ)求證:平面平面
(Ⅱ)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

()(本題滿分14分)
如圖,菱形與矩形所在平面互相垂直,

(Ⅰ)求證:平面;
(Ⅱ)若,當(dāng)二面角為直二面角時,求的值;
(Ⅲ)在(Ⅱ)的條件下,求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題8分)如圖,正三棱柱的底面邊長為,側(cè)棱,
延長線上一點,且

(1)求證:直線平面
(2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)
如圖,PA⊥平面ABC,平面PAB⊥平面PBC  求證:AB⊥BC   
                                                                 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共14分)
在如圖的多面體中,⊥平面,,,
,,,中點.

(Ⅰ) 求證:平面;
(Ⅱ) 求證:;
(Ⅲ) 求二面角的余弦值.  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知菱形ABCD的邊長為2,,S為平面ABCD外一點,為正三角形,,M、N分別為SB、SC的中點。

(Ⅰ)求證:平面平面ABCD;
(Ⅱ)求二面角A—SB—C的余弦值;
(Ⅲ)求四棱錐M—ABN的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)

已知正三棱柱ABC-A1B1C1中,D為AC中點。求證:直線AB1∥平面C1DB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)a、b是異面直線,a與b所成角60°.二面角的大小為.如果,,那么(   )
A.60°B.12C.60°或120°D.不能確定

查看答案和解析>>

同步練習(xí)冊答案