精英家教網 > 高中數學 > 題目詳情
已知橢圓方程為
x2
a2
+
y2
b2
=1
(a>b>0),長軸兩端點A、B,短軸上端頂點為M,點O為坐標原點,F(xiàn)為橢圓的右焦點,且
AF
FB
=1,|OF|=1.
(1)求橢圓方程;
(2)直線l交橢圓于P、Q兩點,問:是否存在直線l,使點F恰為△PQM的垂心?若存在,求出直線l的方程,若不存在,請說明理由.
分析:(1)根據題意可知c,進而根據
AF
FB
=1求得a,進而利用a和c求得b,故可得橢圓的方程;
(2)假設存在直線l交橢圓于P,Q兩點,且F恰為△PQM的垂心,設出P,Q的坐標,利用點M,F(xiàn)的坐標求得直線PQ的斜率,設出直線l的方程,與橢圓方程聯(lián)立,由韋達定理表示出x1+x2和x1x2,進而利用
MP
FQ
=0求得m,即可得到直線的方程..
解答:解:(1)由題意知c=1,
AF
FB
=1,
∴(a+c)•(a-c)=1=a2-c2,∴a2=2
故橢圓方程為
x2
2
+y2=1

(2)假設存在直線l交橢圓于P,Q兩點,且F恰為△PQM的垂心,則
設P(x1,y1),Q(x2,y2),∵M(0,1),F(xiàn)(1,0),故kPQ=1,
于是設直線l為y=x+m,與橢圓方程聯(lián)立,消元可得3x2+4mx+2m2-2=0
MP
FQ
=x1(x2-1)+y2(y1-1)=0又yi=xi+m(i=1,2)
得x1(x2-1)+(x2+m)(x1+m-1)=0
即2x1x2+(x1+x2)(m-1)+m2-m=0
由韋達定理得2•
2m2-2
3
-
4m
3
(m-1)+m2-m=0
解得m=-
4
3
或m=1(舍)
經檢驗m=-
4
3
符合條件,故直線l方程為y=x-
4
3
點評:本題考查橢圓的標準方程,考查了直線與圓錐曲線的關系,考查了學生綜合運用基礎知識解決問題的能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知離心率為
6
3
的橢圓C:
x2
a 2
+
y2
b2
=1
(a>b>0)經過點P(
3
,1)

(1)求橢圓C的方程;
(2)過左焦點F1且不與x軸垂直的直線l交橢圓C于M、N兩點,若
OM
ON
=
4
6
3tan∠MON
(O為坐標原點),求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知方向向量為
V
=(1,
3
)
的直線l過橢圓C:
x2
a 2
+
y2
b2
=1(a>b>0)
的焦點以及點(0,-2
3
),直線l與橢圓C交于A、B兩點,且A、B兩點與另一焦點圍成的三角形周長為4
6

(1)求橢圓C的方程;
(2)過左焦點F1且不與x軸垂直的直線m交橢圓于M、N兩點,
OM
ON
=
4
6
3tan∠MON
≠0
(O坐標原點),求直線m的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓
x2
a
+
y2
b
=1(a>b>0)
過點(1,
3
2
)
,且離心率為
1
2
,A、B是橢圓上縱坐標不為零的兩點,若
AF
FB
(λ∈R)
,且|
AF
|≠|
FB
|
,其中F為橢圓的左焦點.
(I)求橢圓的方程;
(Ⅱ)求A、B兩點的對稱直線在y軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓
x2
a
+
y2
b
=1(a>b>0)
過點(1,
3
2
)
,且離心率為
1
2
,A、B是橢圓上縱坐標不為零的兩點,若
AF
FB
(λ∈R)
,且|
AF
|≠|
FB
|
,其中F為橢圓的左焦點.
(I)求橢圓的方程;
(Ⅱ)求A、B兩點的對稱直線在y軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知離心率為
6
3
的橢圓C:
x2
a 2
+
y2
b2
=1
(a>b>0)經過點P(
3
,1)

(1)求橢圓C的方程;
(2)過左焦點F1且不與x軸垂直的直線l交橢圓C于M、N兩點,若
OM
ON
=
4
6
3tan∠MON
(O為坐標原點),求直線l的方程.

查看答案和解析>>

同步練習冊答案