已知函數(shù)f(x)=2sin2(
π
4
+x)-
3
cos2x,x∈[
π
4
,
π
2
]

(Ⅰ)求f(x)的最大值和最小值;
(Ⅱ)若不等式|f(x)-m|<2在定義域上恒成立,求實(shí)數(shù)m的取值范圍.
分析:(Ⅰ)利用二倍角公式和兩角和公式對(duì)函數(shù)的解析式進(jìn)行化簡(jiǎn)整理,進(jìn)而根據(jù)x的范圍和正弦函數(shù)的單調(diào)性求得函數(shù)的最大和最小值.
(Ⅱ)問題轉(zhuǎn)化為f(x)-2<m<f(x)+2恒成立,進(jìn)而利用(1)中函數(shù)的最大值和最小值,推斷出m>f(x)max-2且m<f(x)min+2,求得m的范圍.
解答:解:(Ⅰ)∵f(x)=[1-cos(
π
2
+2x)]-
3
cos2x=1+sin2x-
3
cos2x
=1+2sin(2x-
π
3
)

又∵x∈[
π
4
,
π
2
]
,
π
6
≤2x-
π
3
3

2≤1+2sin(2x-
π
3
)≤3
,
∴f(x)max=3,f(x)min=2.

(Ⅱ)∵|f(x)-m|<2?f(x)-2<m<f(x)+2,x∈[
π
4
,
π
2
]
,
∴m>f(x)max-2且m<f(x)min+2,
∴1<m<4,即m的取值范圍是(1,4).
點(diǎn)評(píng):本小題主要考查三角函數(shù)和不等式的基本知識(shí),以及運(yùn)用三角公式、三角函數(shù)的圖象和性質(zhì)解題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-xx+1
;
(1)求出函數(shù)f(x)的對(duì)稱中心;
(2)證明:函數(shù)f(x)在(-1,+∞)上為減函數(shù);
(3)是否存在負(fù)數(shù)x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-x-1,x≤0
x
,x>0
,則f[f(-2)]=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函數(shù)f(x)的值域和最小正周期;
(2)當(dāng)x∈[0,2π]時(shí),求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-
ax+1
(a∈R)
的圖象過點(diǎn)(4,-1)
(1)求a的值;
(2)求證:f(x)在其定義域上有且只有一個(gè)零點(diǎn);
(3)若f(x)+mx>1對(duì)一切的正實(shí)數(shù)x均成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],則當(dāng)x=
3
3
時(shí),函數(shù)f(x)有最大值,最大值為
2
3
2
3

查看答案和解析>>

同步練習(xí)冊(cè)答案