某政府設(shè)有一個(gè)服務(wù)窗口,假設(shè)顧客辦理業(yè)務(wù)所需的時(shí)間互相獨(dú)立,且都是整數(shù)分鐘,對(duì)以往顧客辦理業(yè)務(wù)所需的時(shí)間統(tǒng)計(jì)結(jié)果如下:
辦理業(yè)務(wù)所需的時(shí)間(分鐘) 1 2 3
頻率 0.2 0.4 0.1
從第一個(gè)顧客開(kāi)始辦理業(yè)務(wù)時(shí)計(jì)時(shí).
(1)估計(jì)第三個(gè)顧客恰好等待5分鐘開(kāi)始辦理業(yè)務(wù)的概率;
(2)X表示到第2分鐘末已辦理完業(yè)務(wù)的顧客人數(shù),求X的分布列及數(shù)學(xué)期望.
分析:(1)設(shè)Y表示顧客辦理業(yè)務(wù)所需的時(shí)間,用頻率估計(jì)概率,可得Y的分布列,A表示事件“第三個(gè)顧客恰好等待5分鐘開(kāi)始辦理業(yè)務(wù)”,則時(shí)間A對(duì)應(yīng)三種情形:①第一個(gè)顧客辦理業(yè)務(wù)所需時(shí)間為2分鐘,且第二個(gè)顧客辦理業(yè)務(wù)所需的時(shí)間為3分鐘;②第一個(gè)顧客辦理業(yè)務(wù)所需的時(shí)間為3分鐘,且第二個(gè)顧客辦理業(yè)務(wù)所需的時(shí)間為2分鐘,由此可求概率;
(2)確定X所有可能的取值,求出相應(yīng)的概率,即可得到X的分布列及數(shù)學(xué)期望.
解答:解:(1)設(shè)Y表示顧客辦理業(yè)務(wù)所需的時(shí)間,用頻率估計(jì)概率,得Y的分布如下:
 y  1
 p  0.2  0.4  0.4
A表示事件“第三個(gè)顧客恰好等待5分鐘開(kāi)始辦理業(yè)務(wù)”,則事件A對(duì)應(yīng)兩種情形:
①第一個(gè)顧客辦理業(yè)務(wù)所需時(shí)間為2分鐘,且第二個(gè)顧客辦理業(yè)務(wù)所需的時(shí)間為3分鐘;
②第一個(gè)顧客辦理業(yè)務(wù)所需的時(shí)間為3分鐘,且第二個(gè)顧客辦理業(yè)務(wù)所需的時(shí)間為2分鐘.
所以 P(A)=0.4×0.4+0.4×0.4=0.32.
(2)X所有可能的取值為:0,1,2.
X=0對(duì)應(yīng)第一個(gè)顧客辦理業(yè)務(wù)所需的時(shí)間超過(guò)2分鐘,所以P(X=0)=P(Y>2)=0.4;
X=1對(duì)應(yīng)第一個(gè)顧客辦理業(yè)務(wù)所需的時(shí)間為1分鐘且第二個(gè)顧客辦理業(yè)務(wù)所需時(shí)間超過(guò)1分鐘,或第一個(gè)顧客辦理業(yè)務(wù)所需的時(shí)間為2分鐘,所以P(X=1)=0.2×0.8+0.4=0.56;
X=2對(duì)應(yīng)兩個(gè)顧客辦理業(yè)務(wù)所需的時(shí)間均為1分鐘,所以P(X=2)=0.2×0.2=0.04.
所以X的分布列為:
X 0 1 2
P 0.4 0.56 0.04
EX=0×0.4+1×0.56+2×0.04=0.64.
點(diǎn)評(píng):本題考查概率的求解,考查離散型隨機(jī)變量的分布列與期望,解題的關(guān)鍵是明確變量的取值與含義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某航空公司在機(jī)場(chǎng)設(shè)有一個(gè)服務(wù)窗口,假設(shè)每位乘客辦理登記手續(xù)所需時(shí)間相互獨(dú)立,且都是整數(shù)分鐘,對(duì)以往乘客辦理登機(jī)手續(xù)所需時(shí)間統(tǒng)計(jì)結(jié)果如下:
時(shí)間(分鐘) 2 3 4 5
頻率 0.2 0.3 0.4 0.1
從第一位乘客開(kāi)始辦理登機(jī)手續(xù)時(shí)計(jì)時(shí).
(1)估計(jì)第三位乘客等待5分鐘才開(kāi)始辦理登機(jī)手續(xù)的概率;
(2)至第4分鐘末已經(jīng)辦理完登機(jī)手續(xù)的乘客人數(shù)記為X,求X的分布及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•陜西)某銀行柜臺(tái)設(shè)有一個(gè)服務(wù)窗口,假設(shè)顧客辦理業(yè)務(wù)所需的時(shí)間互相獨(dú)立,且都是整數(shù)分鐘,對(duì)以往顧客辦理業(yè)務(wù)所需的時(shí)間統(tǒng)計(jì)結(jié)果如下:
辦理業(yè)務(wù)所需的時(shí)間(分) 1 2 3 4 5
頻率 0.1 0.4 0.3 0.1 0.1
從第一個(gè)顧客開(kāi)始辦理業(yè)務(wù)時(shí)計(jì)時(shí).
(1)估計(jì)第三個(gè)顧客恰好等待4分鐘開(kāi)始辦理業(yè)務(wù)的概率;
(2)X表示至第2分鐘末已辦理完業(yè)務(wù)的顧客人數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012陜西理)某銀行柜臺(tái)設(shè)有一個(gè)服務(wù)窗口,假設(shè)顧客辦理業(yè)務(wù)所需的時(shí)間互相獨(dú)立,且都是整數(shù)分鐘,對(duì)以往顧客辦理業(yè)務(wù)所需的時(shí)間統(tǒng)計(jì)結(jié)果如下:

從第一個(gè)顧客開(kāi)始辦理業(yè)務(wù)時(shí)計(jì)時(shí).

(1)估計(jì)第三個(gè)顧客恰好等待4分鐘開(kāi)始辦理業(yè)務(wù)的概率;

(2)表示至第2分鐘末已辦理完業(yè)務(wù)的顧客人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年重慶市南開(kāi)中學(xué)高三(上)1月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

某航空公司在機(jī)場(chǎng)設(shè)有一個(gè)服務(wù)窗口,假設(shè)每位乘客辦理登記手續(xù)所需時(shí)間相互獨(dú)立,且都是整數(shù)分鐘,對(duì)以往乘客辦理登機(jī)手續(xù)所需時(shí)間統(tǒng)計(jì)結(jié)果如下:
時(shí)間(分鐘)2345
頻率0.20.30.40.1
從第一位乘客開(kāi)始辦理登機(jī)手續(xù)時(shí)計(jì)時(shí).
(1)估計(jì)第三位乘客等待5分鐘才開(kāi)始辦理登機(jī)手續(xù)的概率;
(2)至第4分鐘末已經(jīng)辦理完登機(jī)手續(xù)的乘客人數(shù)記為X,求X的分布及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案