【題目】已知函數(shù).
(1)當(dāng)時(shí),若函數(shù)恰有一個(gè)零點(diǎn),求的取值范圍;
(2)當(dāng)時(shí), 恒成立,求的取值范圍.
【答案】(1) 或 (2)
【解析】【試題分析】(1)函數(shù)的定義域?yàn)?/span>,當(dāng)時(shí), ,所以,對(duì)分類討論,得到函數(shù)的單調(diào)區(qū)間,由此求得的取值范圍.(2) 令,利用的導(dǎo)數(shù),對(duì)分類討論函數(shù)的單調(diào)區(qū)間,利用最大值小于零,來(lái)求得的取值范圍.
【試題解析】
(1)函數(shù)的定義域?yàn)?/span>,
當(dāng)時(shí), ,所以,
①當(dāng)時(shí), 時(shí)無(wú)零點(diǎn),
②當(dāng)時(shí), ,所以在上單調(diào)遞增,
取,則,
因?yàn)?/span>,所以,此時(shí)函數(shù)恰有一個(gè)零點(diǎn),
③當(dāng)時(shí),令,解得,
當(dāng)時(shí), ,所以在上單調(diào)遞減;
當(dāng)時(shí), ,所以在上單調(diào)遞增.
要使函數(shù)有一個(gè)零點(diǎn),則即,
綜上所述,若函數(shù)恰有一個(gè)零點(diǎn),則或;
(2)令,根據(jù)題意,當(dāng)時(shí), 恒成立,又,
①若,則時(shí), 恒成立,所以在上是增函數(shù),且,所以不符題意.
②若,則時(shí), 恒成立,所以在上是增函數(shù),且,所以不符題意.
③若,則時(shí),恒有,故在上是減函數(shù),于是“對(duì)任意,都成立”的充要條件是,即,解得,故.
綜上, 的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市的公交公司為了方便市民出行,科學(xué)規(guī)劃車輛投放,在一個(gè)人員密集流動(dòng)地段增設(shè)一個(gè)起點(diǎn)站,為了研究車輛發(fā)車間隔時(shí)間與乘客等候人數(shù)之間的關(guān)系,經(jīng)過(guò)調(diào)查得到如下數(shù)據(jù):
間隔時(shí)間/分 | 10 | 11 | 12 | 13 | 14 | 15 |
等候人數(shù)y/人 | 23 | 25 | 26 | 29 | 28 | 31 |
調(diào)查小組先從這組數(shù)據(jù)中選取組數(shù)據(jù)求線性回歸方程,再用剩下的組數(shù)據(jù)進(jìn)行檢驗(yàn).檢驗(yàn)方法如下:先用求得的線性回歸方程計(jì)算間隔時(shí)間對(duì)應(yīng)的等候人數(shù),再求與實(shí)際等候人數(shù)的差,若差值的絕對(duì)值都不超過(guò),則稱所求方程是“恰當(dāng)回歸方程”.
(1)從這組數(shù)據(jù)中隨機(jī)選取2組數(shù)據(jù),求選取的這組數(shù)據(jù)的間隔時(shí)間不相鄰的概率;
(2)若選取的是后面組數(shù)據(jù),求關(guān)于的線性回歸方程,并判斷此方程是否是“恰當(dāng)回歸方程”;
附:對(duì)于一組數(shù)據(jù),,……,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐 中,是正三角形,四邊形ABCD是矩形,且平面平面.
(1)若點(diǎn)E是PC的中點(diǎn),求證:平面BDE;
(2)若點(diǎn)F在線段PA上,且,當(dāng)三棱錐的體積為時(shí),求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線的焦點(diǎn)為F,斜率為正的直線l過(guò)點(diǎn)F交拋物線于A、B兩點(diǎn),滿足.
(1)求直線l的斜率;
(2)設(shè)點(diǎn)在線段上運(yùn)動(dòng),原點(diǎn)關(guān)于點(diǎn)的對(duì)稱點(diǎn)為,求四邊形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(x-k)ex.
(1)求f(x)的單調(diào)區(qū)間;
(2)求f(x)在區(qū)間[0,1]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工藝公司要對(duì)某種工藝品深加工,已知每個(gè)工藝品進(jìn)價(jià)為20元,每個(gè)的加工費(fèi)為n元,銷售單價(jià)為x元.根據(jù)市場(chǎng)調(diào)查,須有,,,同時(shí)日銷售量m(單位:個(gè))與成正比.當(dāng)每個(gè)工藝品的銷售單價(jià)為29元時(shí),日銷售量為1000個(gè).
(1)寫出日銷售利潤(rùn)y(單位:元)與x的函數(shù)關(guān)系式;
(2)當(dāng)每個(gè)工藝品的加工費(fèi)用為5元時(shí),要使該公司的日銷售利潤(rùn)為100萬(wàn)元,試確定銷售單價(jià)x的值.(提示:函數(shù)與的圖象在上有且只有一個(gè)公共點(diǎn))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的值域;
(2)若時(shí),函數(shù)的最小值為,求的值和函數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大型商場(chǎng)在2018年國(guó)慶舉辦了一次抽獎(jiǎng)活動(dòng)抽獎(jiǎng)箱里放有3個(gè)紅球,3個(gè)黑球和1個(gè)白球這些小球除顏色外大小形狀完全相同,從中隨機(jī)一次性取3個(gè)小球,每位顧客每次抽完獎(jiǎng)后將球放回抽獎(jiǎng)箱活動(dòng)另附說(shuō)明如下:
凡購(gòu)物滿含元者,憑購(gòu)物打印憑條可獲得一次抽獎(jiǎng)機(jī)會(huì);
凡購(gòu)物滿含元者,憑購(gòu)物打印憑條可獲得兩次抽獎(jiǎng)機(jī)會(huì);
若取得的3個(gè)小球只有1種顏色,則該顧客中得一等獎(jiǎng),獎(jiǎng)金是一個(gè)10元的紅包;
若取得的3個(gè)小球有3種顏色,則該顧客中得二等獎(jiǎng),獎(jiǎng)金是一個(gè)5元的紅包;
若取得的3個(gè)小球只有2種顏色,則該顧客中得三等獎(jiǎng),獎(jiǎng)金是一個(gè)2元的紅包.
抽獎(jiǎng)活動(dòng)的組織者記錄了該超市前20位顧客的購(gòu)物消費(fèi)數(shù)據(jù)單位:元,繪制得到如圖所示的莖葉圖.
求這20位顧客中獲得抽獎(jiǎng)機(jī)會(huì)的顧客的購(gòu)物消費(fèi)數(shù)據(jù)的中位數(shù)與平均數(shù)結(jié)果精確到整數(shù)部分;
記一次抽獎(jiǎng)獲得的紅包獎(jiǎng)金數(shù)單位:元為X,求X的分布列及數(shù)學(xué)期望,并計(jì)算這20位顧客在抽獎(jiǎng)中獲得紅包的總獎(jiǎng)金數(shù)的平均值假定每位獲得抽獎(jiǎng)機(jī)會(huì)的顧客都會(huì)去抽獎(jiǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知兩個(gè)半徑不相等的與相交于M、N兩點(diǎn),且、分別與內(nèi)切于S、T兩點(diǎn)。求證:OM⊥MN的充分必要條件是S、N、T三點(diǎn)共線。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com