11.在正方體ABCD-A′B′C′D′中,E、F、G、H分別為BC、CC′、A′D′、AA′的中點.求證:平面DEF∥平面B'GH.

分析 利用線面平行,證明平面與平面平行.

解答 證明:連BC'、AD',作AD中點M,連BM,則
∵E、F、G、H分別為BC、CC′、A′D′、AA′的中點,
∴EF∥BC'∥AD'∥GH,DE∥BM∥B'G,
∵EF?面B'GH,DE?面B'GH,GH?面B'GH,B′G?面B'GH,
∴EF∥面B'GH,DE∥面B'GH,
∵EF∩DE=E,
∴面DEF∥面B'GH.

點評 本題考查線面平行、面面平行,關(guān)鍵是證明線面平行.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=x2+x,x1,x2∈R,則下列不等式中一定成立的不等式的序號為①
①f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{f({x}_{1})+f({x}_{2})}{2}$;
②f($\frac{{x}_{1}+{x}_{2}}{2}$)<$\frac{f({x}_{1})+f({x}_{2})}{2}$;
③f($\frac{{x}_{1}+{x}_{2}}{2}$)≥$\frac{f({x}_{1})+f({x}_{2})}{2}$;
④f($\frac{{x}_{1}+{x}_{2}}{2}$)>$\frac{f({x}_{1})+f({x}_{2})}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=a-x+xex,若存在x0>-1,使得f(x0)≤0,則實數(shù)a的取值范圍為( 。
A.[0,+∞)B.(-∞,0]C.[1,+∞)D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.關(guān)于x的方程$\sqrt{4-{x}^{2}}$=$\frac{1}{2}$(x-2)+3解的個數(shù)為2個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.方程:x3-4x2+2x+4=0的根為x=2或x=1+$\sqrt{3}$或x=1-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函f(x)=$\left\{\begin{array}{l}{2cos\frac{πx}{3}(x≤2000)}\\{{2}^{x-2008}(x>2000)}\end{array}\right.$ 則f[f(2015)]等于( 。
A.$\sqrt{3}$B.-$\sqrt{3}$C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求證:函數(shù)f(x)=x+$\frac{1}{\sqrt{x}}$在區(qū)間(1,+∞)上是單調(diào)遞增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.函數(shù)f1(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的一段圖象如圖所示.
(1)求函數(shù)f1(x)的解析式;
(2)將函數(shù)y=f1(x)的圖象向右平移$\frac{π}{4}$個單位,得函數(shù)y=f2(x)的圖象,求y=f2(x)的最大值,并求此時自變量x的集合.
(3)求y=f2(x)在x∈[0,$\frac{π}{2}$]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下面四個函數(shù):(1)y=1-x;(2)y=2x-1;(3)y=x2-1;(4)y=$\frac{5}{x}$,其中定義域與值域相同的函數(shù)有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習(xí)冊答案