【題目】有甲、乙兩個班級進行數(shù)學(xué)考試,按照大于等于120分為優(yōu)秀,120分以下為非優(yōu)秀統(tǒng)計成績后,得到如下2×2列聯(lián)表:(單位:人).
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
甲班 | 10 | ||
乙班 | 30 | ||
總計 | 105 |
已知在全部105人中隨機抽取1人成績是優(yōu)秀的概率為 ,
(1)請完成上面的2 x×2列聯(lián)表,并根據(jù)表中數(shù)據(jù)判斷,是否有95%的把握認(rèn)為“成績與班級有關(guān)系”?
(2)若甲班優(yōu)秀學(xué)生中有男生6名,女生4名,現(xiàn)從中隨機選派3名學(xué)生參加全市數(shù)學(xué)競賽,記參加競賽的男生人數(shù)為X,求X的分布列與期望. 附:K2=
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.010 |
k | 2.072 | 2.706 | 3.841 | 6.635 |
【答案】
(1)解:由已知,兩個班的優(yōu)秀學(xué)生人數(shù)為105× =30,填寫2×2列聯(lián)表如下;
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
甲班 | 10 | 45 | 55 |
乙班 | 20 | 30 | 50 |
總計 | 30 | 75 | 105 |
計算K2= = = ≈6.109>3.841,
所以有95%的把握認(rèn)為“成績與班級有關(guān)系”
(2)解:根據(jù)題意,X的所有可能取值為0,1,2,3;
計算P(X=0)= = = ,
P(X=1)= = = ,
P(X=2)= = = ,
P(X=3)= = ;
∴隨機變量X的分布列為:
X | 0 | 1 | 2 | 3 |
【解析】(1)由已知填寫列聯(lián)表,計算觀測值,對照臨界值即可得出結(jié)論;(2)根據(jù)題意知X的所有可能值,計算對應(yīng)的概率,寫出隨機變量X的分布列,計算數(shù)學(xué)期望值.
P |
|
|
|
數(shù)學(xué)期望為E(X)=0× +1× +2× +3× = ;
或X服從超幾何分布,且N=10,M=6,n=3,
所以E(X)= = = .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如甲圖所示,在矩形ABCD中,AB=4,AD=2,E是CD的中點,將△ADE沿AE折起到△D1AE位置,使平面D1AE⊥平面ABCE,得到乙圖所示的四棱錐D1﹣ABCE.
(Ⅰ)求證:BE⊥平面D1AE;
(Ⅱ)求二面角A﹣D1E﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+2|﹣|x﹣2|+m(m∈R).
(Ⅰ)若m=1,求不等式f(x)≥0的解集;
(Ⅱ)若方程f(x)=x有三個實根,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=ax3﹣xlnx,若x1、x2∈(0,+∞)且x1≠x2 , 不等式(x12﹣x22)(f(x1)﹣f(x2))>0恒成立,則實數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,|φ|< )的圖象在 y軸左側(cè)的第一個最高點為(﹣ ,3),第﹣個最低點為(﹣ ,m),則函數(shù)f(x)的解析式為( )
A.f(x)=3sin( ﹣2x)
B.f(x)=3sin(2x﹣ )
C.f(x)=3sin( ﹣2x)
D.f(x)=3sin(2x﹣ )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|+|x﹣a|
(1)若函數(shù)f(x)的值域為[2,+∞),求實數(shù)a的值
(2)若f(2﹣a)≥f(2),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓O1:(x+a)2+y2=4,圓O2:(x﹣a)2+y2=4,其中常數(shù)a>2,點P是圓O1 , O2外一點.
(1)若a=3,P(﹣1,4),過點P作斜率為k的直線l與圓O1相交,求實數(shù)k的取值范圍;
(2)過點P作O1 , O2的切線,切點分別為M1 , M2 , 記△PO1M1 , △PO2M2的面積分別為S1 , S2 , 若S1= S2 , 求點P的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=2cos (sin ﹣ cos )+ (ω>0)在區(qū)間( ,π)上有且僅有一個零點,則實數(shù)ω的范圍為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com