【題目】如圖,已知F為拋物線y2=4x的焦點,點A,B,C在該拋物線上,其中A,C關于x軸對稱(A在第一象限),且直線BC經(jīng)過點F.

(1)若△ABC的重心為G( ),求直線AB的方程;
(2)設SABO=S1 , SCFO=S2 , 其中O為坐標原點,求S12+S22的最小值.

【答案】
(1)解:設A(x1,y1),B(x2,y2),C(x1,﹣y1),

則△ABC的重心坐標為G( ),

由題意可得2x1+x2= ,且y2=4,

由y22=4x2,y12=4x1

可得x2=4,y2=4,和x1= ,y1=1,

直線AB的斜率k= = ,

即有直線AB的方程為4x﹣5y+4=0;


(2)解:設A(x1,y1),B(x2,y2),C(x1,﹣y1),

設直線BC:x=my+1,代入拋物線方程y2=4x,可得

y2﹣4my﹣4=0,可得﹣y1y2=﹣4,即y1y2=4,

再設直線AB:y=kx+n,代入拋物線方程,可得

ky2﹣4y+4n=0,y1y2= =4,即n=k,

則有直線AB:y=k(x+1),即有直線AB恒過定點E(﹣1,0),

則SABO= |OE||y2﹣y1|= |y2﹣y1|,

SCFO= |OF||y1|= |y1|,

即有S12+S22= (y2﹣y12+ y12= = (2y12+ ﹣8)

(2 ﹣8)=2 ﹣2.

即有S12+S22的最小值為2 ﹣2,當且僅當y1= ,y2=


【解析】(1)設A(x1 , y1),B(x2 , y2),C(x1 , ﹣y1),運用三角形的重心坐標公式和拋物線方程,即可求得A,B的坐標,進而得到直線方程;(2)通過直線BC,AB的方程和拋物線方程,運用韋達定理,可得恒過定點(﹣1,0),即有SABO= |OE||y2﹣y1|= |y2﹣y1|,SCFO= |OF||y1|= |y1|,y1y2=4,再由基本不等式計算即可得到最小值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】;給定函數(shù)① ,② ,③y=|x﹣1|,④y=2x+1 , 其中在區(qū)間(0,1)上單調遞減的函數(shù)序號是(
A.①②
B.②③
C.③④
D.①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一直線l過直線l1:3x﹣y=3和直線l2:x﹣2y=2的交點P,且與直線l3:x﹣y+1=0垂直.
(1)求直線l的方程;
(2)若直線l與圓心在x正半軸上的半徑為 的圓C相切,求圓C的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓 的左、右焦點分別為F1 , F2 , 離心率為e,過F2的直線與橢圓的交于A,B兩點,若△F1AB是以A為頂點的等腰直角三角形,則e2=(
A.3﹣2
B.5﹣3
C.9﹣6
D.6﹣4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知一四棱錐P﹣ABCD的三視圖如圖所示,E是側棱PC上的動點.
(Ⅰ)求四棱錐P﹣ABCD的體積.
(Ⅱ)若點E為PC的中點,AC∩BD=O,求證:EO∥平面PAD;
(Ⅲ)是否不論點E在何位置,都有BD⊥AE?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設定義在R上的函數(shù)f(x)是最小正周期2π的偶函數(shù),f′(x)是函數(shù)f(x)的導函數(shù),當x∈[0,π]時,0<f(x)<1;當x∈(0,π),且x≠ 時,(x﹣ )f′(x)>0,則函數(shù)y=f(x)﹣sinx在[﹣2π,2π]上的零點個數(shù)為(
A.2
B.4
C.5
D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)g(x)=ax2﹣2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設f(x)=
(1)求a,b的值;
(2)不等式f(2x)﹣k2x≥0在x∈[﹣1,1]上恒成立,求實數(shù)k的取值范圍;
(3)方程f(|2x﹣1|)+k( ﹣3)有三個不同的實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+2bx+c,且f(1)=f(3)=﹣1.設a>0,將函數(shù)f(x)的圖象先向右平移a個單位長度,再向下平移a2個單位長度,得到函數(shù)g(x)的圖象. (Ⅰ)若函數(shù)g(x)有兩個零點x1 , x2 , 且x1<4<x2 , 求實數(shù)a的取值范圍;
(Ⅱ)設連續(xù)函數(shù)在區(qū)間[m,n]上的值域為[λ,μ],若有 ,則稱該函數(shù)為“陡峭函數(shù)”.若函數(shù)g(x)在區(qū)間[a,2a]上為“陡峭函數(shù)”,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖:四棱錐P﹣ABCD中,底面ABCD是平行四邊形,且AC=BD,PA⊥底面ABCD,PA=AB=1, ,點F是PB的中點,點E在邊BC上移動.
(1)證明:當點E在邊BC上移動時,總有EF⊥AF;
(2)當CE等于何值時,PA與平面PDE所成角的大小為45°.

查看答案和解析>>

同步練習冊答案