【題目】已知函數(shù), .
(1)求函數(shù)的單調區(qū)間;
(2)若關于的方程有實數(shù)根,求實數(shù)的取值范圍.
【答案】(1)單調遞增區(qū)間為,單調遞減區(qū)間為;(2) .
【解析】試題分析:
(1)結合函數(shù)的解析式可得, ,結合導函數(shù)與原函數(shù)的單調性的關系可得函數(shù)的單調遞增區(qū)間為,單調遞減區(qū)間為.
(2)原問題等價于方程有實數(shù)根,構造函數(shù),利用導函數(shù)研究函數(shù)存在零點的充要條件可得:當時,方程有實數(shù)根.
試題解析:
(1)依題意,得, .
令,即,解得;
令,即,解得,
故函數(shù)的單調遞增區(qū)間為,單調遞減區(qū)間為.
(2)由題得, .
依題意,方程有實數(shù)根,
即函數(shù)存在零點,
又,
令,得.
當時, ,即函數(shù)在區(qū)間上單調遞減,
而, ,
所以函數(shù)存在零點;
當時, , 隨的變化情況如表:
|
|
|
|
| 極小值 |
所以為函數(shù)的極小值,也是最小值.
當,即時,函數(shù)沒有零點;
當,即時,注意到, ,
所以函數(shù)存在零點.
綜上所述,當時,方程有實數(shù)根.
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的幾何體中,D是AC的中點,EF∥DB.
(1)已知AB=BC,AF=CF,求證:AC⊥平面BEF;
(2)已知G、H分別是EC和FB的中點,求證:GH∥平面ABC.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示.
(1)求函數(shù)的解析式;
(2)設 π<x< π,且方程f(x)=m有兩個不同的實數(shù)根,求實數(shù)m的取值范圍和這兩個根的和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知公差不為零的等差數(shù)列{an}中,a1=1且a1 , a3 , a9成等比數(shù)列, (Ⅰ)求數(shù)列{an}的通項公式
(Ⅱ)設bn=n2 求數(shù)列[bn}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的定義域為,且對任意實數(shù)恒有(且)成立.
(1)求函數(shù)的解析式;
(2)討論在上的單調性,并用定義加以證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是奇函數(shù)并且是R上的單調函數(shù),若函數(shù)y=f(2x2+1)+f(λ﹣x)只有一個零點,則實數(shù)λ的值是( )
A.
B.
C.﹣
D.﹣
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我市為增強市民的環(huán)境保護意識,面向全市征召義務宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機抽取100名按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
(1)分別求第3,4,5組的頻率.
(2)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加廣場宣傳活動,應從第3,4,5組各抽取多少名志愿者?
(3)在(2)的條件下,我市決定在這6名志愿者中隨機抽取2名志愿者介紹宣傳經驗,求第4組至少有一名志愿者被抽中的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com