已知時有極大值6,在時有極小值
的值;并求在區(qū)間[-3,3]上的最大值和最小值.

在區(qū)間[-3,3]上,當時,時,

解析試題分析:解: 2分
由條件知
 6分

x
-3
(-3,-2)
-2
(-2,1)
1
(1,3)
3

 

0

0

 



6




10分    
由上表知,在區(qū)間[-3,3]上,當時,
時, 12分
考點:導數(shù)的運用
點評:解決的關鍵是根據(jù)導數(shù)的符號判定函數(shù)單調性,進而得到極值和最值,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知為偶函數(shù),曲線過點(2,5), .
(1)若曲線有斜率為0的切線,求實數(shù)的取值范圍;
(2)若當時函數(shù)取得極值,確定的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=lnx-.
(1)當時,判斷f(x)在定義域上的單調性;
(2)若f(x)在[1,e]上的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求的極值;
(2)當時,求的值域;
(3)設,函數(shù),若對于任意,總存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)時取得極值.
(1)求、b的值;
(2)若對于任意的,都有成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為常數(shù),已知函數(shù)在區(qū)間上是增函數(shù),在區(qū)間上是減函數(shù).
(1)設為函數(shù)的圖像上任意一點,求點到直線的距離的最小值;
(2)若對任意的,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)討論函數(shù)在定義域內的極值點的個數(shù);
(2)若函數(shù)處取得極值,對,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設a為實數(shù), 函數(shù) 
(Ⅰ)求的極值.
(Ⅱ)當a在什么范圍內取值時,曲線軸僅有一個交點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
設函數(shù)
(Ⅰ)若,求的單調區(qū)間;
(Ⅱ)若當≥0時≥0,求的取值范圍.

查看答案和解析>>

同步練習冊答案