數(shù)列{an}滿足a1=3,數(shù)學(xué)公式,
(1)計算a2,a3,a4,并由此猜想通項公式an;
(2)用數(shù)學(xué)歸納法證明(1)的猜想.

解:(1)∵a1=3=,an+1=4-,
∴a2=4-=4-=;
a3=4-=4(1-)=,
a4=4(1-)=4(1-)=
由此猜想通項公式an=;
(2)下面用數(shù)學(xué)歸納法證明an=
證明:1°當n=1時,a1==3,等式成立;
2°假設(shè)n=k時,ak=,
則n=k+1時,
ak+1=4-
=4(1-
=4(1-
=4×
=
=,即n=k+1時等式也成立.
綜合1°,2°知,對任意正整數(shù)n,an=
分析:(1)由遞推關(guān)系a1=3,an+1=4-計算可得a2,a3,a4,由此可猜想通項公式an
(2)利用數(shù)學(xué)歸納法證明即可.
點評:本題考查數(shù)學(xué)歸納法,考查歸納推理與證明,猜想出an=是關(guān)鍵,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)b>0,數(shù)列{an}滿足a1=b,an=
nban-1an-1+n-1
(n≥2)
(1)求數(shù)列{an}的通項公式;
(4)證明:對于一切正整數(shù)n,2an≤bn+1+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}滿足a1=1,a2=2,an=
an-1an-2
(n≥3)
,則a17等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,數(shù)列{an}滿足a1=a,an+1=a+
1
an
,n=1,2,….

(I)已知數(shù)列{an}極限存在且大于零,求A=
lim
n→∞
an
(將A用a表示);
(II)設(shè)bn=an-A,n=1,2,…,證明:bn+1=-
bn
A(bn+A)
;
(III)若|bn|≤
1
2n
對n=1,2,…
都成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1=1,an=
12
an-1+1(n≥2)

(1)若bn=an-2,求證{bn}為等比數(shù)列;    
(2)求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1=
4
3
,an+1=an2-an+1(n∈N*),則m=
1
a1
+
1
a2
+…+
1
a2013
的整數(shù)部分是( 。

查看答案和解析>>

同步練習(xí)冊答案