若實數(shù)mn∈{-1,1,2,3},且mn,則方程=1表示的曲線是焦點在x軸上的雙曲線的概率為________.
根據(jù)焦點在x軸上的雙曲線的特征確定基本事件的個數(shù),代入古典概型計算公式計算即可.因為mn,所以(mn)共有4×3=12種,其中焦點在x軸上的雙曲線即m>0,n<0,有(1,-1),(2,-1),(3,-1)共3種,故所求概率為P.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為了調(diào)査某大學(xué)學(xué)生在某天上網(wǎng)的時間,隨機對lOO名男生和100名女生進行了不記名的問卷調(diào)查.得到了如下的統(tǒng)計結(jié)果:
表l:男生上網(wǎng)時間與頻數(shù)分布表

表2:女生上網(wǎng)時間與頻數(shù)分布表

(I)從這100名男生中任意選出3人,其中恰有1人上網(wǎng)時間少于60分鐘的概率;
(II)完成下面的2X2列聯(lián)表,并回答能否有90%的把握認為“大學(xué)生上網(wǎng)時間與性別有關(guān)”?
表3:

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

中隨機抽取一個數(shù)記為a,從{-1,1,-2,2}中隨機抽取一個數(shù)記為b,則函數(shù)y=ax+b的圖象經(jīng)過第三象限的概率是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

某學(xué)校成立了數(shù)學(xué)、英語、音樂3個課外興趣小組,3個小組分別有39,32,33個成員,一些成員參加了不止一個小組,具體情況如圖所示.現(xiàn)隨機選取一個成員,他屬于至少2個小組的概率是   ,他屬于不超過2個小組的概率是    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

甲、乙、丙三人參加某項測試,他們能達標的概率分別是0.8,0.6,0.5,則三人中至少有一人達標的概率是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)ξ為隨機變量,從棱長為1的正方體的12條棱中任取兩條,當(dāng)兩條棱相交時,ξ=0;當(dāng)兩條棱平行時,ξ的值為兩條棱之間的距離;當(dāng)兩條棱異面時,ξ=1.
(1)求概率P(ξ=0);
(2)求ξ的分布列,并求其數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一個盒子里裝有7張卡片,其中有紅色卡片4張,編號分別為1,2,3,4;白色卡片3張,編號分別為2,3,4.從盒子中任取4張卡片(假設(shè)取到任何一張卡片的可能性相同).
(1)求取出的4張卡片中,含有編號為3的卡片的概率;
(2)在取出的4張卡片中,紅色卡片編號的最大值設(shè)為X,求隨機變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班48人進行了問卷調(diào)查得到了如下的2×2列聯(lián)表:
 
喜愛打籃球
不喜愛打籃球
合計
男生
 
6
 
女生
10
 
 
合計
 
 
48
已知在全班48人中隨機抽取1人,抽到喜愛打籃球的學(xué)生的概率為.
(1)請將上面的2×2列聯(lián)表補充完整(不用寫計算過程);
(2)你是否有95%的把握認為喜愛打籃球與性別有關(guān)?說明你的理由;
(3)現(xiàn)從女生中抽取2人進一步調(diào)查,設(shè)其中喜愛打籃球的女生人數(shù)為X,求X的分布列與數(shù)學(xué)期望.
下面的臨界值表供參考:
P(χ2x0)或
P(K2k0)
0.10
0.05
0.010
0.005
x0(或k0)
2.706
3.841
6.635
7.879
 
(參考公式)χ2,其中nn11n12n21n22K2,其中nabcd)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,一游泳者自游泳池邊上的點,沿方向游了10米,,然后任意選擇一個方向并沿此方向繼續(xù)游,則他再游不超過10米就能夠回到游泳池邊的概率是(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案