【題目】已知函數(shù).
(1)當時,試求函數(shù)圖像過點的切線方程;
(2)當時,若關于的方程有唯一實數(shù)解,試求實數(shù)的取值范圍;
(3)若函數(shù)有兩個極值點,且不等式恒成立,試求實數(shù)的取值范圍.
【答案】(1);(2)或;(3).
【解析】
試題對于(1),先利用導數(shù)求出切線的斜率,再寫出點斜式方程;
對于(2),方程可化為:,構造,通過研究的單調性即可求出的范圍.
對于(3),首先根據有兩個極值點,利用導數(shù)求出的取值范圍以及極值點;將恒成立轉化為恒成立,然后構建函數(shù)求出的最小值即可.
試題解析:
(1)當時,有.
∵,∴,
∴過點的切線方程為:,
即.
(2)當時,有,其定義域為:,
從而方程可化為:,
令,則,
由或;.
∴在和上單調遞增,在上單調遞減,
且,
又當時,;當時,.
∵關于的方程有唯一實數(shù)解,
∴實數(shù)的取值范圍是:或.
(3)∵的定義域為:.
令.
又∵函數(shù)有兩個極值點,
∴有兩個不等實數(shù)根,
∴,且,
從而.
由不等式恒成立恒成立,
∵,
令,
∴,當時恒成立,
∴函數(shù)在上單調遞減,∴,
故實數(shù)的取值范圍是:.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱中,平面側面,且
(1)求證: ;
(2)若直線與平面所成的角為,請問在線段上是否存在點,使得二面角的大小為,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,PA=AD=DC=2,AB=4且AB∥CD,∠BAD=90°.
(1)求證:BC⊥PC;
(2)求PB與平面PAC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班共有學生45人,其中女生18人,現(xiàn)用分層抽樣的方法,從男、女學生中各抽取若干學生進行演講比賽,有關數(shù)據見下表(單位:人)
性別 | 學生人數(shù) | 抽取人數(shù) |
女生 | 18 | |
男生 | 3 |
(1)求和;
(2)若從抽取的學生中再選2人做專題演講,求這2人都是男生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線的參數(shù)方程是(是參數(shù)),以坐標原點為原點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)判斷直線與曲線的位置關系;
(2)過直線上的點作曲線的切線,求切線長的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線C的參數(shù)方程為為參數(shù).在以原點為極點,為參數(shù)).在以原點為極點,軸的正半軸為極軸的極坐標系中,直線的極坐標方程為.
(Ⅰ)求曲線C的普通方程和直線的直角坐標方程;
(Ⅱ)設,直線與曲線C交于M,N兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了打好脫貧攻堅戰(zhàn),某貧困縣農科院針對玉米種植情況進行調研,力爭有效的改良玉米品種,為農民提供技術支.現(xiàn)對已選出的一組玉米的莖高進行統(tǒng)計,獲得莖葉圖如右圖(單位:厘米),設莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.
(1)完成列聯(lián)表,并判斷是否可以在犯錯誤的概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關?
(2)①按照分層抽樣的方式,在上述樣本中,從易倒伏和抗倒伏兩組中抽取9株玉米,設取出的易倒伏矮莖玉米株數(shù)為,求的分布列(概率用組合數(shù)算式表示);
②若將頻率視為概率,從抗倒伏的玉米試驗田中再隨機抽取出50株,求取出的高莖玉米株數(shù)的數(shù)學期望和方差.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為坐標原點,圓,定點,點是圓上一動點,線段的垂直平分線交圓的半徑于點,點的軌跡為.
(1)求曲線的方程;
(2)已知點是曲線上但不在坐標軸上的任意一點,曲線與軸的焦點分別為,直線和分別與軸相交于兩點,請問線段長之積是否為定值?如果還請求出定值,如果不是請說明理由;
(3)在(2)的條件下,若點坐標為(-1,0),設過點的直線與相交于兩點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場在“五一”促銷活動中,為了了解消費額在5千元以下(含5千元)的顧客的消費分布情況,從這些顧客中隨機抽取了100位顧客的消費數(shù)據(單位:千元),按,,,,分成5組,制成了如圖所示的頻率分布直方圖現(xiàn)采用分層抽樣的方法從和兩組顧客中抽取4人進行滿意度調查,再從這4人中隨機抽取2人作為幸運顧客,求所抽取的2位幸運顧客都來自組的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com