已知橢圓方程為,P為橢圓上的動點,F(xiàn)1、F2為橢圓的兩焦點,當點P不在x軸上時,過F1作∠F1PF2的外角平分線的垂線F1M,垂足為M,當點P在x軸上時,定義M與P重合.
(Ⅰ)求M點的軌跡T的方程;
(Ⅱ)已知、,試探究是否存在這樣的點:是軌跡T內(nèi)部的整點(平面內(nèi)橫、縱坐標均為整數(shù)的點稱為整點),且△OEQ的面積?若存在,求出點Q的坐標,若不存在,說明理由.
解:(Ⅰ)當點P不在x軸上時,延長F1M與F2P的延長線相交于點N,連結(jié)OM,
∵, ∴≌ ∴M是線段的中點,|,
∴ = ==
∵點P在橢圓上
∴= ∴=4,
當點P在x軸上時,M與P重合
∴M點的軌跡T的方程為:.
(Ⅱ)連結(jié)OE,易知軌跡T上有兩個點
A,B滿足,
分別過A、B作直線OE的兩條平行線、.
∵同底等高的兩個三角形的面積相等
∴符合條件的點均在直線、上.
∵ ∴直線、的方程分別為:
、
設(shè)點 ( )∵在軌跡T內(nèi),∴
分別解與,得 與
∵∴為偶數(shù),在上對應(yīng)的
在上,對應(yīng)的
∴滿足條件的點存在,共有6個,它們的坐標分別為:
.
【解析】略
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓方程為,P為橢圓上的動點,F(xiàn)1、F2為橢圓的兩焦點,當點P不在x軸上時,過F1作∠F1PF2的外角平分線的垂線F1M,垂足為M,當點P在x軸上時,定義M與P重合.
(Ⅰ)求M點的軌跡T的方程;
(Ⅱ)已知、,試探究是否存在這樣的點:是軌跡T內(nèi)部的整點(平面內(nèi)橫、縱坐標均為整數(shù)的點稱為整點),且△OEQ的面積?若存在,求出點Q的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓方程為,P為橢圓上的動點,F(xiàn)1、F2為橢圓的兩焦點,當點P不在x軸上時,過F1作∠F1PF2的外角平分線的垂線F1M,垂足為M,當點P在x軸上時,定義M與P重合.
(Ⅰ)求M點的軌跡T的方程;
(Ⅱ)已知、,試探究是否存在這樣的點:是軌跡T內(nèi)部的整點(平面內(nèi)橫、縱坐標均為整數(shù)的點稱為整點),且△OEQ的面積?若存在,求出點Q的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
已知橢圓方程為,P為橢圓上的動點,F(xiàn)1、F2為橢圓的兩焦點,當點P不在x軸上時,過F1作∠F1PF2的外角平分線的垂線F1M,垂足為M,當點P在x軸上時,定義M與P重合.
(Ⅰ)求M點的軌跡T的方程;
(Ⅱ)已知、,試探究是否存在這樣的點:是軌跡T內(nèi)部的整點(平面內(nèi)橫、縱坐標均為整數(shù)的點稱為整點),且△OEQ的面積?若存在,求出點Q的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
已知橢圓方程為,P為橢圓上的動點,F(xiàn)1、F2為橢圓的兩焦點,當點P不在x軸上時,過F1作∠F1PF2的外角平分線的垂線F1M,垂足為M,當點P在x軸上時,定義M與P重合.
(Ⅰ)求M點的軌跡T的方程;
(Ⅱ)已知、,試探究是否存在這樣的點:是軌跡T內(nèi)部的整點(平面內(nèi)橫、縱坐標均為整數(shù)的點稱為整點),且△OEQ的面積?若存在,求出點Q的坐標,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com