已知橢圓方程為,P為橢圓上的動點,F(xiàn)1、F2為橢圓的兩焦點,當點P不在x軸上時,過F1作∠F1PF2的外角平分線的垂線F1M,垂足為M,當點P在x軸上時,定義M與P重合.

(Ⅰ)求M點的軌跡T的方程;

(Ⅱ)已知、,試探究是否存在這樣的點是軌跡T內(nèi)部的整點(平面內(nèi)橫、縱坐標均為整數(shù)的點稱為整點),且△OEQ的面積?若存在,求出點Q的坐標,若不存在,說明理由.

 

【答案】

解:(Ⅰ)當點P不在x軸上時,延長F1M與F2P的延長線相交于點N,連結(jié)OM,

,  ∴ ∴M是線段的中點,|,

= ==

∵點P在橢圓上

    ∴=4,

當點P在x軸上時,M與P重合

∴M點的軌跡T的方程為:

(Ⅱ)連結(jié)OE,易知軌跡T上有兩個點

A,B滿足,

分別過A、B作直線OE的兩條平行線.

∵同底等高的兩個三角形的面積相等

∴符合條件的點均在直線上.

   ∴直線、的方程分別為:

、

設(shè)點 )∵在軌跡T內(nèi),∴

分別解,得

為偶數(shù),在對應(yīng)的

,對應(yīng)的

∴滿足條件的點存在,共有6個,它們的坐標分別為:

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓方程為,P為橢圓上的動點,F(xiàn)1、F2為橢圓的兩焦點,當點P不在x軸上時,過F1作∠F1PF2的外角平分線的垂線F1M,垂足為M,當點P在x軸上時,定義M與P重合.

(Ⅰ)求M點的軌跡T的方程;

(Ⅱ)已知、,試探究是否存在這樣的點是軌跡T內(nèi)部的整點(平面內(nèi)橫、縱坐標均為整數(shù)的點稱為整點),且△OEQ的面積?若存在,求出點Q的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓方程為,P為橢圓上的動點,F(xiàn)1、F2為橢圓的兩焦點,當點P不在x軸上時,過F1作∠F1PF2的外角平分線的垂線F1M,垂足為M,當點P在x軸上時,定義M與P重合.

(Ⅰ)求M點的軌跡T的方程;

(Ⅱ)已知、,試探究是否存在這樣的點是軌跡T內(nèi)部的整點(平面內(nèi)橫、縱坐標均為整數(shù)的點稱為整點),且△OEQ的面積?若存在,求出點Q的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

已知橢圓方程為,P為橢圓上的動點,F(xiàn)1、F2為橢圓的兩焦點,當點P不在x軸上時,過F1作∠F1PF2的外角平分線的垂線F1M,垂足為M,當點P在x軸上時,定義M與P重合.

(Ⅰ)求M點的軌跡T的方程;

(Ⅱ)已知、,試探究是否存在這樣的點是軌跡T內(nèi)部的整點(平面內(nèi)橫、縱坐標均為整數(shù)的點稱為整點),且△OEQ的面積?若存在,求出點Q的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

已知橢圓方程為,P為橢圓上的動點,F(xiàn)1、F2為橢圓的兩焦點,當點P不在x軸上時,過F1作∠F1PF2的外角平分線的垂線F1M,垂足為M,當點P在x軸上時,定義M與P重合.

(Ⅰ)求M點的軌跡T的方程;

(Ⅱ)已知、,試探究是否存在這樣的點是軌跡T內(nèi)部的整點(平面內(nèi)橫、縱坐標均為整數(shù)的點稱為整點),且△OEQ的面積?若存在,求出點Q的坐標,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案