【題目】已知正△ABC三個(gè)頂點(diǎn)都在半徑為2的球面上,球心O到平面ABC的距離為1,點(diǎn)E是線段AB的中點(diǎn),過點(diǎn)E作球O的截面,則截面面積的最小值是

【答案】
【解析】解:設(shè)正△ABC的中心為O1 , 連結(jié)O1O、O1C、O1E、OE,
∵O1是正△ABC的中心,A、B、C三點(diǎn)都在球面上,
∴O1O⊥平面ABC,結(jié)合O1C平面ABC,可得O1O⊥O1C,
∵球的半徑R=2,球心O到平面ABC的距離為1,得O1O=1,
∴Rt△O1OC中,O1C=
又∵E為AB的中點(diǎn),∴Rt△O1EC中,O1E=O1C=
∴Rt△OO1E中,OE=
∵過E作球O的截面,當(dāng)截面與OE垂直時(shí),截面圓的半徑最小,
∴當(dāng)截面與OE垂直時(shí),截面圓的面積有最小值.
此時(shí)截面圓的半徑r=
可得截面面積為S=πr2=
故答案為:

設(shè)正△ABC的中心為O1 , 連結(jié)O1O、O1C、O1E、OE.根據(jù)球的截面圓性質(zhì)、正三角形的性質(zhì)與勾股定理,結(jié)合題中數(shù)據(jù)算出OE.而經(jīng)過點(diǎn)E的球O的截面,當(dāng)截面與OE垂直時(shí)截面圓的半徑最小,相應(yīng)地截面圓的面積有最小值,由此算出截面圓半徑的最小值,從而可得截面面積的最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln(3+x)+ln(3﹣x).
(Ⅰ)求函數(shù)y=f(x)的定義域;
(Ⅱ)判斷函數(shù)y=f(x)的奇偶性;
(Ⅲ)若f(2m﹣1)<f(m),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), (其中).對(duì)于不相等的實(shí)數(shù),設(shè), .現(xiàn)有如下命題:

(1)對(duì)于任意不相等的實(shí)數(shù),都有

(2)對(duì)于任意的a及任意不相等的實(shí)數(shù),都有

(3)對(duì)于任意的a,存在不相等的實(shí)數(shù),使得;

(4)對(duì)于任意的a,存在不相等的實(shí)數(shù),使得.

其中的真命題有_____________(寫出所有真命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有正整數(shù)構(gòu)成的數(shù)表如下:

第一行:1

第二行:1 2

第三行:1 1 2 3

第四行:1 1 2 1 1 2 3 4

第五行:1 1 2 1 1 2 3 1 1 2 1 1 2 3 4 5

…… …… ……

行:先抄寫第1行,接著按原序抄寫第2行,然后按原序抄寫第3行,...,直至按原序抄寫第行,最后添上數(shù).(如第四行,先抄寫第一行的數(shù)1,接著按原序抄寫第二行的數(shù)1,2,接著按原序抄寫第三行的數(shù)1,1,2,3,最后添上數(shù)4).

將按照上述方式寫下的第個(gè)數(shù)記作(如

(1)用表示數(shù)表第行的數(shù)的個(gè)數(shù),求數(shù)列的前項(xiàng)和;

(2)第8行中的數(shù)是否超過73個(gè)?若是,用表示第8行中的第73個(gè)數(shù),試求的值;若不是,請(qǐng)說明理由;

(3)令,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過原點(diǎn)的動(dòng)直線與圓相交于不同的兩點(diǎn) .

(1)求圓的圓心坐標(biāo);

(2)求線段的中點(diǎn)的軌跡的方程;

(3)是否存在實(shí)數(shù),使得直線與曲線只有一個(gè)交點(diǎn)?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處的切線方程為

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若為整數(shù),當(dāng)時(shí), 恒成立,求的最大值(其中的導(dǎo)函數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是等差數(shù)列的前項(xiàng)和,已知, , .

1)求;

2若數(shù)列,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)是橢圓 上的一點(diǎn),橢圓的右焦點(diǎn)為,斜率為的直線交橢圓兩點(diǎn),且、三點(diǎn)互不重合.

(1)求橢圓的方程;

(2)求證:直線 的斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體中, 為棱上一動(dòng)點(diǎn), 為底面上一動(dòng)點(diǎn), 的中點(diǎn),若點(diǎn)都運(yùn)動(dòng)時(shí),點(diǎn)構(gòu)成的點(diǎn)集是一個(gè)空間幾何體,則這個(gè)幾何體是(

A. 棱柱 B. 棱臺(tái) C. 棱錐 D. 球的一部分

查看答案和解析>>

同步練習(xí)冊(cè)答案