已知函數(shù)f(x)=
2x(x<0)
3
(0≤x≤1)
log
1
3
x(x>1)
, 當(dāng)a<0
時(shí),則f(f(f(a)))的值為( 。
A、
3
B、-
1
2
C、-2
D、2
分析:由a<0時(shí),可得f(a)=2a∈(0,1),從而可求f(f(a))=f(2a)然后結(jié)合2a的范圍進(jìn)一步可求.
解答:解:由題意可得,當(dāng)a<0時(shí),f(a)=2a∈(0,1)
f(f(a))=f(2a)=
3

f(f(f(a)))=f(
3
)=log
1
3
3
=-
1
2

故選B.
點(diǎn)評(píng):本題主要考查了分段函數(shù)的函數(shù)值的求解,解題的關(guān)鍵是由a的范圍求出2a的范圍,結(jié)合每段的取值范圍進(jìn)行求解,屬于基礎(chǔ)試題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-xx+1

(1)求出函數(shù)f(x)的對(duì)稱中心;
(2)證明:函數(shù)f(x)在(-1,+∞)上為減函數(shù);
(3)是否存在負(fù)數(shù)x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-x-1,x≤0
x
,x>0
,則f[f(-2)]=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函數(shù)f(x)的值域和最小正周期;
(2)當(dāng)x∈[0,2π]時(shí),求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-
ax+1
(a∈R)
的圖象過點(diǎn)(4,-1)
(1)求a的值;
(2)求證:f(x)在其定義域上有且只有一個(gè)零點(diǎn);
(3)若f(x)+mx>1對(duì)一切的正實(shí)數(shù)x均成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],則當(dāng)x=
3
3
時(shí),函數(shù)f(x)有最大值,最大值為
2
3
2
3

查看答案和解析>>

同步練習(xí)冊(cè)答案