如圖,在正方形ABCD-
A
 
1
B1C1D1
中,E,F(xiàn)分別是棱AB,BC中點(diǎn).
(1)求證:EF∥平面
A
 
1
C1D

(2)求證:EF⊥平面BB1D.
分析:(1)利用三角形中位線的性質(zhì),證明線線平行,從而可得線面平行;
(2)利用線面垂直的判定,可得結(jié)論.
解答:證明:(1)∵E,F(xiàn)分別是棱AB,BC中點(diǎn),
∴EF∥AC
∵AC∥A1C1,
∴EF∥A1C1,
∵A1C1?平面
A
 
1
C1D
,EF?平面
A
 
1
C1D

∴EF∥平面
A
 
1
C1D

(2)∵EF∥AC,AC⊥BD
∴EF⊥BD,
∵BB1⊥平面ABCD,EF?平面ABCD
∴EF⊥BB1,
∵BD∩BB1=B
∴EF⊥平面BB1D.
點(diǎn)評(píng):本題考查線面平行,考查線面垂直,考查學(xué)生分析解決問(wèn)題的能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在多面體ABC-A1B1C1中,四邊形A1ABB1是正方形,AB=AC,BC=
2
AB
,B1C1
.
.
1
2
BC
,二面角A1-AB-C是直二面角.
(Ⅰ)求證:AB1∥平面 A1C1C;
(Ⅱ)求BC與平面A1C1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•青島二模)如圖,在多面體ABC-A1B1C1中,四邊形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,B1C1=
12
BC.
(Ⅰ)求證:面A1AC⊥面ABC;
(Ⅱ)求證:AB1∥面A1C1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•鄭州二模)如圖,在多面體ABC-A1B1C1中,四邊形A1ABB1是正方形,AB=AC,BC=
2
AB,B1C1
.
1
2
BC
,二面角A1-AB-C是直二面角.
(I)求證:A1B1⊥平面AA1C; 
(II)求證:AB1∥平面 A1C1C;
(II)求BC與平面A1C1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省煙臺(tái)市萊州一中高三第二次質(zhì)量檢測(cè)數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,在多面體ABC-A1B1C1中,四邊形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,BC.
(Ⅰ)求證:面A1AC⊥面ABC;
(Ⅱ)求證:AB1∥面A1C1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年山東省青島市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

如圖,在多面體ABC-A1B1C1中,四邊形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,BC.
(Ⅰ)求證:面A1AC⊥面ABC;
(Ⅱ)求證:AB1∥面A1C1C.

查看答案和解析>>

同步練習(xí)冊(cè)答案