【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù))。曲線的參數(shù)方程為(為參數(shù)),在以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線,的極坐標(biāo)方程;
(2)在極坐標(biāo)系中,射線與曲線交于點,射線與曲線交于點,求的面積(其中為坐標(biāo)原點).
【答案】(1) 曲線:,曲線:.
(2)1.
【解析】分析:第一問首先將參數(shù)方程消參化為普通方程,之后應(yīng)用極坐標(biāo)與平面直角坐標(biāo)之間的轉(zhuǎn)換關(guān)系,求得結(jié)果,第二問聯(lián)立對應(yīng)曲線的極坐標(biāo)方程,求得對應(yīng)點的極坐標(biāo),結(jié)合極徑和極角的意義,結(jié)合三角形面積公式求得結(jié)果.
詳解:(1)由曲線:(為參數(shù)),消去參數(shù)得:
化簡極坐標(biāo)方程為:
曲線:(為參數(shù))消去參數(shù)得:
化簡極坐標(biāo)方程為:
(2)聯(lián)立 即
聯(lián)立 即
故
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的是函數(shù)(,)在區(qū)間上的圖象,將該函數(shù)圖象各點的橫坐標(biāo)縮小到原來的一半(縱坐標(biāo)不變),再向右平移()個單位長度后,所得到的圖象關(guān)于直線對稱,則的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點是拋物線:上一點,且到的焦點的距離為.
(1)若直線與交于,兩點,為坐標(biāo)原點,證明:;
(2)若是上一動點,點不在直線:上,過作直線垂直于軸且交于點,過作的垂線,垂足為.試判斷與中是否有一個為定值?若是,請指出哪一個為定值,并加以證明;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù) 有以下四個命題:
①對于任意的,都有; ②函數(shù)是偶函數(shù);
③若為一個非零有理數(shù),則對任意恒成立;
④在圖象上存在三個點,,,使得為等邊三角形.其中正確命題的序號是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:()的左右頂點分別為,,點在橢圓上,且的面積為.
(1)求橢圓的方程;
(2)設(shè)直線不經(jīng)過點且與橢圓交于,兩點,若直線與直線的斜率之積為,證明:直線過頂點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,函數(shù)在上的最小值為,若不等式有解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某食品企業(yè)一個月內(nèi)被消費者投訴的次數(shù)用表示,據(jù)統(tǒng)計,隨機變量的概率分布如列聯(lián)表.
(1)求的值和的數(shù)學(xué)期望;
(2)假設(shè)一月份與二月份被消費者投訴的次數(shù)互不影響求該企業(yè)在這兩個月內(nèi)共被消費者投訴次的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是美麗的“勾股樹”,它是一個直角三角形分別以它的每一邊向外作正方形而得到.圖一是第1代“勾股樹”,重復(fù)圖一的作法,得到圖二為第2代“勾股樹”,以此類推,已知最大的正方形面積為1,則第n代“勾股樹”所有正方形的面積的和為( )
A. nB. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,⊥底面,⊥,∥,AD=DC=AP=2,AB=1,點E為棱PC的中點.
(1)證明:BE⊥DC;
(2)若F為棱PC上一點,滿足BF⊥AC,求二面角F-AB-P的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com