已知拋物線y2=2x的焦點(diǎn)是F,點(diǎn)P是拋物線上的動點(diǎn),又有點(diǎn)A(3,2),則|PA|+|PF|取最小值時P點(diǎn)的坐標(biāo)為________.
(2,2)
分析:作PM⊥準(zhǔn)線l,M為垂足,由拋物線的定義可得|PA|+|PF|=|PA|+|PM|,故當(dāng)P,A,M三點(diǎn)共線時,|PA|+|PM|最小為|AM|,此時,P點(diǎn)的縱坐標(biāo)為2,代入拋物線的方程可求得P點(diǎn)的橫坐標(biāo)為1,從而得到P點(diǎn)的坐標(biāo).
解答:由題意可得F(
,0 ),準(zhǔn)線方程為 x=-
,作PM⊥準(zhǔn)線l,M為垂足,
由拋物線的定義可得|PA|+|PF|=|PA|+|PM|,
故當(dāng)P,A,M三點(diǎn)共線時,|PA|+|PM|最小為|AM|=3-(-
)=
,
此時,P點(diǎn)的縱坐標(biāo)為2,代入拋物線的方程可求得P點(diǎn)的橫坐標(biāo)為2,故P點(diǎn)的坐標(biāo)為(2,2),
故答案為:(2,2).
點(diǎn)評:本題考查橢圓的定義、標(biāo)準(zhǔn)方程,以及簡單性質(zhì)的應(yīng)用,判斷當(dāng)P,A,M三點(diǎn)共線時,|PA|+|PM|最小為|AM|,是解題的關(guān)鍵.