如圖一,平面四邊形ABCD關(guān)于直線AC對(duì)稱,∠A=60°,∠C=90°,CD=2.把△ABD沿BD折起(如圖二),使二面角A-BD-C的余弦值等于.對(duì)于圖二,完成以下各小題:

(1)求A,C兩點(diǎn)間的距離;

(2)證明:AC⊥平面BCD;

(3)求直線AC與平面ABD所成角的正弦值.

答案:
解析:

  解:(Ⅰ)取的中點(diǎn),連接,

  由,得:

  就是二面角的平面角, 2分

  在△ACE中,

  

  

   4分

  (Ⅱ)由,

  

   6分

  ,

  又,平面. 8分

  (Ⅲ)方法一:由(Ⅰ)知平面平面

  ∴平面平面 10分,

  平面平面

  作,則平面

  就是與平面所成的角, 12分

  . 14分

  方法二:設(shè)點(diǎn)到平面的距離為,

  ∵ 10分

  

   12分

  于是與平面所成角的正弦為:. 14分

  方法三:以所在直線分別為軸,軸和軸建立空間直角坐標(biāo)系,則

  . 10分

  設(shè)平面的法向量為n,則:n,n,

  取,則n, 12分,

  于是與平面所成角的正弦即

  . 14分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖一,平面四邊形ABCD關(guān)于直線AC對(duì)稱,∠A=60°,∠C=90°,CD=2.把△ABD沿BD折起(如圖二),使二面角A-BD-C的余弦值等于
3
3
.對(duì)于圖二,完成以下各小題:
(Ⅰ)求A,C兩點(diǎn)間的距離;
(Ⅱ)證明:AC⊥平面BCD;
(Ⅲ)求直線AC與平面ABD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省六校高三4月月考考試數(shù)學(xué)理卷 題型:解答題

(本題滿分14分)

如圖一,平面四邊形ABCD關(guān)于直線AC對(duì)稱,,

沿BD折起(如圖二),使二面角A-BD-C的余弦值等于。對(duì)于圖二,

(1)求的長(zhǎng),并證明:平面

(2)求直線與平面所成角的正弦值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省六校高三4月月考考試數(shù)學(xué)理卷 題型:解答題

(本題滿分14分)

如圖一,平面四邊形ABCD關(guān)于直線AC對(duì)稱,。

沿BD折起(如圖二),使二面角A-BD-C的余弦值等于。對(duì)于圖二,

(1)求的長(zhǎng),并證明:平面;

(2)求直線與平面所成角的正弦值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年遼寧省名校領(lǐng)航高考數(shù)學(xué)預(yù)測(cè)試卷(六)(解析版) 題型:解答題

如圖一,平面四邊形ABCD關(guān)于直線AC對(duì)稱,∠A=60°,∠C=90°,CD=2.把△ABD沿BD折起(如圖二),使二面角A-BD-C的余弦值等于.對(duì)于圖二,完成以下各小題:
(Ⅰ)求A,C兩點(diǎn)間的距離;
(Ⅱ)證明:AC⊥平面BCD;
(Ⅲ)求直線AC與平面ABD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年廣東省深圳市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

如圖一,平面四邊形ABCD關(guān)于直線AC對(duì)稱,∠A=60°,∠C=90°,CD=2.把△ABD沿BD折起(如圖二),使二面角A-BD-C的余弦值等于.對(duì)于圖二,完成以下各小題:
(Ⅰ)求A,C兩點(diǎn)間的距離;
(Ⅱ)證明:AC⊥平面BCD;
(Ⅲ)求直線AC與平面ABD所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案