在正方體ABCD-A1B1C1D1中,AB=2,E是棱CD的中點(diǎn),則三棱錐A1-BB1E的體積為( 。
A、
3
2
B、
5
6
C、
4
3
D、
2
3
考點(diǎn):棱柱、棱錐、棱臺(tái)的體積
專題:空間位置關(guān)系與距離
分析:如圖所示,設(shè)點(diǎn)E到平面A1BB1的距離為hE,可得hE=AD=AB.利用VA1-BB1E=VE-A1BB1即可得出.
解答: 解:如圖所示,
設(shè)點(diǎn)E到平面A1BB1的距離為hE
則hE=AD=AB.
VA1-BB1E=VE-A1BB1=
1
3
×hE×SA1BB1

=
1
3
×2×
1
2
×22

=
4
3

故選:C.
點(diǎn)評(píng):本題考查了三棱錐的體積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=lg
1-x
1+x

(1)求它的定義域;
(2)判斷它的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z1=(2-3i),z2=
1+i
i
求:
(Ⅰ)z1•z2; 
(Ⅱ)
z1
z2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)U為全集,A∩B=∅,則B∩(∁UA)為( 。
A、AB、B
C、∁UBD、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:max{x,y}表示x、y兩個(gè)數(shù)中的最大值,min{x,y}表示x、y兩個(gè)數(shù)中的最小值.給出下列4個(gè)命題:
①max{x1,x2}≥a?x1≥a且x2≥a;
②max{x1,x2}≤a?x1≤a且x2≤a;
③設(shè)函數(shù)f(x)和g(x)的公共定義域?yàn)镈,若x∈D,f(x)≥g(x)恒成立,則[f(x)]min≥[g(x)]max;
④若函數(shù)f(x)=min{|x|,|x+t|}的圖象關(guān)于直線x=-
1
2
對(duì)稱,則t的值為1.
其中真命題是
 
.(寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x~N(3,22),求P(2≤x<4),P(x≥3),P(|x|>2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
x•2x
4x+1
的最大值是M,最小值是m,則M+m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,P,Q,R分別是棱BC,CD,DD1的中點(diǎn).下列命題:
①過A1C1且與CD1平行的平面有且只有一個(gè);
②平面PQR截正方體所得截面圖形是等腰梯形;
③AC1與QR所成的角為60°;
④線段MN與GH分別在棱A1B1和CC1上運(yùn)動(dòng),則三棱錐M-NGH體積是定值;
⑤線段MN是該正方體內(nèi)切球的一條直徑,點(diǎn)O在正方體表面上運(yùn)動(dòng),則
OM
ON
的最大值是2.
其中真命題的序號(hào)是
 
 (寫出所有真命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,a,b是異面直線,畫出平面α,使a?α,且b∥α,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案