已知:P為橢圓上的任意一點,過橢圓的右頂點A和上頂點B分別作與x軸和y 軸的平行線交于C,過P引BC、AC的平行線交AC于N,交BC于M,交AB于D、E,矩形PMCN是S1,三角形PDE的面積是S2,則S1:S2=( )

A.1
B.2
C.
D.與點P的坐標有關(guān)
【答案】分析:確定AB的方程,求出S△ADN、SACME.利用P(x,y)在橢圓上可知面積相等,從而可得結(jié)論.
解答:解:設(shè)P(x,y)在第一象限,則AB的方程為,∴D(,y),
∴S△ADN==
∵E(x,),
∴SACME==
∵P(x,y)在橢圓上,∴
,
=
∴S△ADN=SACME
∵矩形PMCN是S1,三角形PDE的面積是S2,
∴S1:S2=1:1
故選A.
點評:本題考查橢圓的標準方程,考查面積的計算,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知A、D分別為橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左頂點與上頂點,橢圓的離心率e=
3
2
,F(xiàn)1、F2為橢圓的左、右焦點,點P是線段AD上的任一點,且
PF1
PF2
的最大值為1.
(1)求橢圓E的方程.
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且OA⊥OB(O為坐標原點),若存在,求出該圓的方程;若不存在,請說明理由.
(3)設(shè)直線l與圓C:x2+y2=R2(1<R<2)相切于A1,且l與橢圓E有且僅有一個公共點B1,當R為何值時,|A1B1|取最大值?并求最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
,P為橢圓上除長軸端點外的任一點,F(xiàn)1,F(xiàn)2為橢圓的兩個焦點.
(1)若∠PF1F2=α,∠PF1F2=β,求證:離心率e=
cos
α+β
2
cos
α-β
2
;
(2)若∠F1PF2=2θ,求證:△F1PF2的面積為b2•tanθ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年江蘇模擬) 已知均在橢圓上,直線分別過橢圓的左右焦點、,當時,有.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)是橢圓上的任一點,為圓的任一條直徑,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

已知均在橢圓上,直線、分別過橢圓的左右焦點,當時,有.

   (I)求橢圓的方程;

   (II)設(shè)P是橢圓上的任一點,為圓的任一條直徑,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:高考數(shù)學一輪復(fù)習必備(第61課時):第八章 圓錐曲線方程-橢圓(解析版) 題型:解答題

已知橢圓,P為橢圓上除長軸端點外的任一點,F(xiàn)1,F(xiàn)2為橢圓的兩個焦點.
(1)若∠PF1F2=α,∠PF1F2=β,求證:離心率
(2)若∠F1PF2=2θ,求證:△F1PF2的面積為b2•tanθ.

查看答案和解析>>

同步練習冊答案