已知A={a2,a+1,-3},B={a-3,3a-1,a2+1},C={x|mx=1},若A∩B={-3}
(1)求a的值;
(2)若C⊆(A∩B),求m的值.

解:(1)∵-3∈B,∴a-3=-3或3a-1=-3,解得a=0或
當a=0時,A={0,1,-3},B={-3,-1,1},而A∩B={-3,1}≠{-3},∴a≠0;
時,A={},B={},A∩B={-3}.
綜上得
(2)∵C⊆(A∩B),∴C=∅或{-3}.
①當C=∅時,m=0,滿足題意;
②當C={-3}時,-3m=1,解得滿足題意.
綜上可知:m=0或
分析:(1)利用集合與元素之間的關(guān)系得出a的值,再通過驗證是否滿足題意即可;
(2)先得出集合C,再分類討論即可.
點評:熟練掌握集合的運算和之間的關(guān)系及分類討論是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a1,a2,…,ak(k≥2)},其中ai∈Z(i=1,2,…,k),由A中的元素構(gòu)成兩個相應(yīng)的集合:S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,b∈A,a-b∈A}.其中(a,b)是有序數(shù)對,集合S和T中的元素個數(shù)分別為m和n.若對于任意的a∈A,總有-a∉A,則稱集合A具有性質(zhì)P.
(Ⅰ)檢驗集合{0,1,2,3}與{-1,2,3}是否具有性質(zhì)P并對其中具有性質(zhì)P的集合,寫出相應(yīng)的集合S和T;
(Ⅱ)對任何具有性質(zhì)P的集合A,證明:n≤
k(k-1)2
;
(Ⅲ)判斷m和n的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={a2,a+1,-3},B={a-3,3a-1,a2+1},C={x|mx=1},若A∩B={-3}
(1)求a的值;
(2)若C⊆(A∩B),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c,d為實數(shù),判斷下列命題的真假.
(1)若ac2>bc2,則a>b
(2)若a<b<c,則 a2>ab>b2
(3)若a>b>0,則
a
d
b
c

(4)若0<a<b,則 
b
a
b+x
a+x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={a2,a+1,-3},B={a-3,3a-1,a2+1}若A∩B={-3},求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知集合A={x|x2-1=0},集合B={x|mx-1=0},若A∪B=A,求實數(shù)m組成的集合;
(2)已知集合A={a2,a+1,-3},B={a-3,2a-1,a2+1},若A∩B={-3},求實數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊答案