過橢圓
x2
9
+
y2
5
=1左焦點(diǎn)F且不垂直于x軸的直線交橢圓于A、B兩點(diǎn),AB的垂直平分線交x軸于點(diǎn)N,則
|NF|
|AB|
=
 
考點(diǎn):橢圓的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:利用特值法.不妨取直線的斜率為1.由此推導(dǎo)出|NF|:|AB|的值.
解答: 解:取直線的斜率為1.右焦點(diǎn)F(2,0).直線AB的方程為y=x-2.
把y=x-2代入
x2
9
+
y2
5
=1整理得14x2-36x-9=0,
設(shè)A(x1,y1),B(x2,y2),則x1+x2=
18
7
,y1+y2=-
10
7
,x1x2=-
9
14
,
∴AB中點(diǎn)坐標(biāo)為(
9
7
,-
5
7
),則AB的中垂線方程為y+
5
7
=-(x-
9
7
),
令y=0,得x=
4
7
,∴點(diǎn)N的坐標(biāo)(
4
7
,0).
∴|NF|=
(
4
7
-2)2
=
10
7
,|AB|=
2[(
18
7
)2-4×(-
9
14
)]
=
30
7
,
|NF|
|AB|
=
1
3

故答案為:
1
3
點(diǎn)評:特值法是求解選擇題和填空題的有效方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C1:x2=2py(p>0)與橢圓C2
x2
a2
+
y2
b2
=1(a>b>0)在第一象限的公共點(diǎn)為A(2
2
,1),設(shè)拋物線C1的焦點(diǎn)為F,橢圓C2的左、右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),△F1F2F的面積為6.
(Ⅰ)求拋物線C1和橢圓C2的方程;
(Ⅱ)設(shè)A1,A2為橢圓C2的左、右頂點(diǎn),P為橢圓C2上異于A1,A2的任意一點(diǎn),直線l:x=
a2
c
,l與直線A1P,A2P分別交于點(diǎn)M,N,試探究:在x軸上是否存在定點(diǎn)D,使得以線段MN為直徑的圓恒過點(diǎn)D,若存在,請求出點(diǎn)D的坐標(biāo),若不存在,請說明理由;
(Ⅲ)推廣(Ⅱ),得橢圓的一般性的正確命題,據(jù)此類比,得到雙曲線的一般性正確命題,請直接寫出這個雙曲線的正確命題(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=(sinx+cosx)2在區(qū)間(0,+∞)內(nèi)的全部極值點(diǎn)按從小到大的順序排成數(shù)列{an}.
(I)求數(shù)列{an}的通項公式;
(Ⅱ)令bn=2nan,其中n∈N*,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)若不等式|-4x+b|<6的解集為(-1,2),求b的值;
(2)若不等式x2-5x+a≥0的解集為(-∞,2]∪[b,+∞),求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a3=7,a6=16,則a10=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=1,an+1=an+
1
n(n+1)
(n∈N*),則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有如下判斷或結(jié)論:
①過平面外一點(diǎn)有且只有一條直線與該平面垂直;
②過平面外一點(diǎn)有且只有一條直線與該平面平行;
③如果兩個平行平面和第三個平面相交,那么所得的兩條交線平行;
④如果兩個平面相互垂直,那么經(jīng)過第一個平面內(nèi)一點(diǎn)且垂直于第二個平面的直線必在第一個平面內(nèi).
則錯誤的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的周長為16,面積為6,且BC=6,則
AB
AC
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(n)=
n2,n為奇數(shù)
-n2,n為偶數(shù)
,且an=f(n)+f(n+1),則a1+a2+a3+…+a1001=
 

查看答案和解析>>

同步練習(xí)冊答案