在矩形ABCD中,對(duì)角線AC與相鄰兩邊所成的角為α,β,則cos2α+cos2β=1.類比到空間中一個(gè)正確命題是:在長(zhǎng)方體ABCD-A1B1C1D1中,對(duì)角線AC1與相鄰三個(gè)面所成的角為α,β,γ,則有   
【答案】分析:本題考查的知識(shí)點(diǎn)是類比推理,由在長(zhǎng)方形中,設(shè)一條對(duì)角線與其一頂點(diǎn)出發(fā)的兩條邊所成的角分別是α,β,則有cos2α+cos2β=1,根據(jù)長(zhǎng)方體性質(zhì)可以類比推斷出空間性質(zhì),從而得出答案.
解答:解:我們將平面中的兩維性質(zhì),類比推斷到空間中的三維性質(zhì).
由在長(zhǎng)方形中,設(shè)一條對(duì)角線與其一頂點(diǎn)出發(fā)的兩條邊所成的角分別是α,β,
則有cos2α+cos2β=1,
我們根據(jù)長(zhǎng)方體性質(zhì)可以類比推斷出空間性質(zhì),
∵長(zhǎng)方體ABCD-A1B1C1D1中,
對(duì)角線AC1與過(guò)A點(diǎn)的三個(gè)面ABCD,AA1B1B、AA1D1D所成的角分別為α,β,γ,
∴cosα=,cosβ=,cosγ=,
∴cos2α+cos2β+cos2γ
===2.
故答案為:cos2α+cos2β+cos2γ=2.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是類比推理,在由平面圖形的性質(zhì)向空間物體的性質(zhì)進(jìn)行類比時(shí),常用的思路有:由平面圖形中點(diǎn)的性質(zhì)類比推理出空間里的線的性質(zhì),由平面圖形中線的性質(zhì)類比推理出空間中面的性質(zhì),由平面圖形中面的性質(zhì)類比推理出空間中體的性質(zhì),或是將平面中的兩維性質(zhì),類比推斷到空間中的三維性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•浙江)已知矩形ABCD,AB=1,BC=
2
.將△ABD沿矩形的對(duì)角線BD所在的直線進(jìn)行翻折,在翻折過(guò)程中( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角梯形ABCD中AD∥BC,BC⊥CD,∠ABC=45°,直角梯形ABCD與矩形ADQP所在平面垂直,將矩形ADQP沿PD對(duì)折,使得翻折后點(diǎn)Q落在BC上,設(shè)DC=1.

(1)求證:AQ⊥DQ;
(2)求線段AD的最小值,并指出此時(shí)點(diǎn)Q的位置;
(3)當(dāng)AD長(zhǎng)度最小時(shí),求直線BD與平面PDQ所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠A,∠B,∠C的對(duì)邊分別為a,b,c,關(guān)于△ABC的面積,有如下公式成立:S△ABC=
1
2
absin∠C=
1
2
acsin∠B=
1
2
bcsin∠A

試用上述公式,解答下題:
矩形ABCD中,AB=4cm,BC=6cm,E是BC的中點(diǎn),如圖.動(dòng)點(diǎn)P以每秒2cm的速度從A出發(fā),沿△AED的邊按A→E→D→A的順序繞行一周,設(shè)P點(diǎn)從A出發(fā)經(jīng)過(guò)x秒后△APD的面積為ycm2,求x與y的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

在矩形ABCD中,AB2BC,MN分別為ABCD的中點(diǎn),在以A、B、C、D、MN為起點(diǎn)和終點(diǎn)的所有向量中,相等的非零向量共有多少對(duì)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在△ABC中,∠A,∠B,∠C的對(duì)邊分別為a,b,c,關(guān)于△ABC的面積,有如下公式成立:數(shù)學(xué)公式
試用上述公式,解答下題:
矩形ABCD中,AB=4cm,BC=6cm,E是BC的中點(diǎn),如圖.動(dòng)點(diǎn)P以每秒2cm的速度從A出發(fā),沿△AED的邊按A→E→D→A的順序繞行一周,設(shè)P點(diǎn)從A出發(fā)經(jīng)過(guò)x秒后△APD的面積為ycm2,求x與y的關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案