【題目】已知f(x)為定義在[﹣1,1]上的奇函數(shù),當(dāng)x∈[﹣1,0]時(shí),函數(shù)解析式為 .
(1)求f(x)在[0,1]上的解析式;
(2)求f(x)在[0,1]上的最值.
【答案】
(1)解:設(shè)x∈[0,1],則﹣x∈[﹣1,0].∴f(x)= =4x﹣2x
又∵f(﹣x)=﹣f(x)=﹣(4x﹣2x)∴f(x)=2x﹣4x.
所以,f(x)在[0,1]上的解析式為f(x)=2x﹣4x
(2)解:當(dāng)x∈[0,1],f(x)=2x﹣4x=﹣(2x)2+2x,
∴設(shè)t=2x(t>0),則y=﹣t2+t∵x∈[0,1],∴t∈[1,2]
當(dāng)t=1時(shí)x=0,f(x)max=0;當(dāng)t=2時(shí)x=1,f(x)min=﹣2
【解析】(1)設(shè)x∈[0,1],則﹣x∈[﹣1,0],利用條件結(jié)合奇函數(shù)的定義求f(x)在[0,1]上的解析式;(2)設(shè)t=2x(t>0),則y=﹣t2+t,利用二次函數(shù)的性質(zhì)求f(x)在[0,1]上的最值.
【考點(diǎn)精析】本題主要考查了函數(shù)奇偶性的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對(duì)年銷(xiāo)售量y(單位:t)和年利潤(rùn)z(單位:千元)的影響.對(duì)近8年的年宣傳費(fèi)xi和年銷(xiāo)售量yi(i=1,2,…,8)數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及下面一些統(tǒng)計(jì)量的值.
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中 , .
附:對(duì)于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸直線v=α+βu的斜率和截距的最下二乘估計(jì)分別為 , .
(1)根據(jù)散點(diǎn)圖判斷,y=a+bx與 哪一個(gè)適宜作為年銷(xiāo)售量y關(guān)于年宣傳費(fèi)x的回歸方程類(lèi)型?(給出判斷即可,不必說(shuō)明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(3)已知這種產(chǎn)品的年利潤(rùn)z與x,y的關(guān)系為z=0.2y-x.根據(jù)(2)的結(jié)果回答下列問(wèn)題:
①年宣傳費(fèi)x=49時(shí),年銷(xiāo)售量及年利潤(rùn)的預(yù)報(bào)值時(shí)多少?
②年宣傳費(fèi)x為何值時(shí),年利潤(rùn)的預(yù)報(bào)值最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】Rt△ABC的斜邊BC在平面α內(nèi),則△ABC的兩條直角邊在平面α內(nèi)的正射影與斜邊組成的圖形只能是( )
A.一條線段
B.一個(gè)銳角三角形或一條線段
C.一個(gè)鈍角三角形或一條線段
D.一條線段或一個(gè)鈍角三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校畢業(yè)典禮由6個(gè)節(jié)目組成,考慮整體效果,對(duì)節(jié)目演出順序有如下要求:節(jié)目甲必須排在前三位,且節(jié)目丙、丁必須排在一起,則該校畢業(yè)典禮節(jié)目演出順序的編排方案共有
A. 種 B. 種 C. 種 D. 種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與橢圓交于兩點(diǎn),與軸交于點(diǎn), 為弦的中點(diǎn),直線分別與直線和直線交于兩點(diǎn).
(1)求直線的斜率和直線的斜率之積;
(2)分別記和的面積為,是否存在正數(shù),使得若存在,求出的取值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的三個(gè)頂點(diǎn)A、B、C及平面內(nèi)一點(diǎn)P滿足 + = ,下列結(jié)論中正確的是( )
A.P在△ABC的內(nèi)部
B.P在△ABC的邊AB上
C.P在AB邊所在直線上
D.P在△ABC的外部
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方體ABCD﹣A1B1C1D1中,AA1= ,AB=1,AD=2,E為BC的中點(diǎn),點(diǎn)M為棱AA1的中點(diǎn).
(1)證明:DE⊥平面A1AE;
(2)證明:BM∥平面A1ED.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若對(duì)任意的x∈[﹣1,2],都有x2﹣2x+a≤0(a為常數(shù)),則a的取值范圍是( )
A.(﹣∞,﹣3]
B.(﹣∞,0]
C.[1,+∞)
D.(﹣∞,1]
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com