在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,
AD1
A1B
=
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專(zhuān)題:計(jì)算題,空間向量及應(yīng)用
分析:運(yùn)用正方體從一頂點(diǎn)出發(fā)的三條棱垂直,其向量的數(shù)量積為0,結(jié)合向量的平行四邊形法則和三角形法則,計(jì)算即可得到所求值.
解答: 解:由于正方體ABCD-A1B1C1D1中,
AA1
AB
=
AD
AB
=
AD
AA1
=0,
則有
AD1
A1B
=(
AA1
+
AD
)•(
AB
-
AA1

=
AA1
AB
-
AA1
2
+
AD
AB
-
AD
AA1

=0-22+0-0=-4.
故答案為:-4.
點(diǎn)評(píng):本題考查空間向量的運(yùn)用,考查向量的數(shù)量積的定義和性質(zhì),考查向量垂直的條件,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線3x2-y2=12的中心為O,左右焦點(diǎn)分別為F1,F(xiàn)2,左頂點(diǎn)為A.
(1)求雙曲線的實(shí)軸長(zhǎng)、虛軸長(zhǎng)、離心率和漸近線方程;
(2)設(shè)過(guò)A平行于y軸的直線交雙曲線的兩條漸近線分別于B,C,求四邊形F1COB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
x-
1
x
,x<0
-2+lnx,x>0
的零點(diǎn)個(gè)數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在四棱錐P-ABCD中,底面為正方形,PA⊥平面ABCD,且AB=2,AP=4,則點(diǎn)C到平面PBD的距離是( 。
A、
2
3
B、
6
3
C、
4
3
D、
4
10
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法錯(cuò)誤的個(gè)數(shù)是( 。
①若數(shù)列{an}的通項(xiàng)為{an}=
1
n(n+1)
,則它的前100項(xiàng)和S100=
99
100

②若數(shù)列{an}的前n項(xiàng)和為Sn,若a1=1,且當(dāng)n≥2時(shí),恒有Sn=2an,則{an}是等比數(shù)列.
③如果定義在R上的偶函數(shù)f(x)有零點(diǎn),則它的所有零點(diǎn)之和等于0.
④把函數(shù)y=sin(2x+
π
6
)的圖象向右平移
π
4
個(gè)長(zhǎng)度單位,即可得到y(tǒng)=sin(2x-
π
3
)的圖象.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)滿足:(1)對(duì)于任意的x1,x2∈R,有f(x1+x2)=f(x1)•f(x2);(2)滿足“對(duì)任意x1,x2∈R,且x1≠x2,都有
f(x1)-f(x2)
x1-x2
<0”,下列函數(shù)滿足這些條件的函數(shù)是(  )
A、f(x)=lnx
B、f(x)=x 
1
3
C、f(x)=ax(0<a<1)
D、f(x)=ax(a>1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ax3+bsin x+3且f(1)=2014,f(-1)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=1-3cos2x,x∈R,求出函數(shù)的最大值、最小值,并且求使函數(shù)取得最大值、最小值的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的連續(xù)函數(shù)f(x)是一個(gè)奇函數(shù),則
1
-1
[ex+f(x)]dx等于(  )
A、e+
1
e
B、e-
1
e
C、0
D、無(wú)法計(jì)算

查看答案和解析>>

同步練習(xí)冊(cè)答案