8.有甲、乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于等于120分為優(yōu)秀,120分以下為非優(yōu)秀統(tǒng)計(jì)成績后,得到如下2×2列聯(lián)表:(單位:人).
優(yōu)秀非優(yōu)秀總計(jì)
甲班10
乙班30
總計(jì)105
已知在全部105人中隨機(jī)抽取1人成績是優(yōu)秀的概率為$\frac{2}{7}$,
(1)請(qǐng)完成上面的2 x×2列聯(lián)表,并根據(jù)表中數(shù)據(jù)判斷,是否有95%的把握認(rèn)為“成績與班級(jí)有關(guān)系”?
(2)若甲班優(yōu)秀學(xué)生中有男生6名,女生4名,現(xiàn)從中隨機(jī)選派3名學(xué)生參加全市數(shù)學(xué)競賽,記參加競賽的男生人數(shù)為X,求X的分布列與期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.150.100.050.010
k2.0722.7063.8416.635

分析 (1)由已知填寫列聯(lián)表,計(jì)算觀測(cè)值,對(duì)照臨界值即可得出結(jié)論;
(2)根據(jù)題意知X的所有可能值,計(jì)算對(duì)應(yīng)的概率,寫出隨機(jī)變量X的分布列,計(jì)算數(shù)學(xué)期望值.

解答 解:(1)由已知,兩個(gè)班的優(yōu)秀學(xué)生人數(shù)為105×$\frac{2}{7}$=30,填寫2×2列聯(lián)表如下;

優(yōu)秀非優(yōu)秀總計(jì)
甲班104555
乙班203050
總計(jì)3075105
計(jì)算K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$=$\frac{105{×(10×30-20×45)}^{2}}{30×75×55×50}$=$\frac{336}{55}$≈6.109>3.841,
所以有95%的把握認(rèn)為“成績與班級(jí)有關(guān)系”;
(2)根據(jù)題意,X的所有可能取值為0,1,2,3;
計(jì)算P(X=0)=$\frac{{C}_{4}^{3}}{{C}_{10}^{3}}$=$\frac{4}{120}$=$\frac{1}{30}$,
P(X=1)=$\frac{{C}_{6}^{1}{•C}_{4}^{2}}{{C}_{10}^{3}}$=$\frac{36}{120}$=$\frac{3}{10}$,
P(X=2)=$\frac{{C}_{6}^{2}{•C}_{4}^{1}}{{C}_{10}^{3}}$=$\frac{60}{120}$=$\frac{1}{2}$,
P(X=3)=$\frac{{C}_{6}^{3}}{{C}_{10}^{3}}$=$\frac{1}{6}$;
∴隨機(jī)變量X的分布列為:
X0 1 23
 P$\frac{1}{30}$$\frac{3}{10}$ $\frac{1}{2}$$\frac{1}{6}$
數(shù)學(xué)期望為E(X)=0×$\frac{1}{30}$+1×$\frac{3}{10}$+2×$\frac{1}{2}$+3×$\frac{1}{6}$=$\frac{9}{5}$;
或X服從超幾何分布,且N=10,M=6,n=3,
所以E(X)=$\frac{nM}{N}$=$\frac{3×6}{10}$=$\frac{9}{5}$.

點(diǎn)評(píng) 本題考查了獨(dú)立性檢驗(yàn)與離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的計(jì)算問題,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)公差不為0的等差數(shù)列{an}的前n項(xiàng)和為Sn,若a2,a5,a11成等比數(shù)列,且a11=2(Sm-Sn)(m>n>0,m,n∈N*),則m+n的值是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在極坐標(biāo)系中,曲線C1:ρ=2cosθ,曲線${C_2}:ρ{sin^2}θ=4cosθ$.以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸建立直角坐標(biāo)系xOy,曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$(t為參數(shù)).
(Ⅰ)求C1,C2的直角坐標(biāo)方程;
(Ⅱ)C與C1,C2交于不同四點(diǎn),這四點(diǎn)在C上的排列順序?yàn)镻,Q,R,S,求||PQ|-|RS||的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)矩陣M=$[\begin{array}{l}{1}&{2}\\{x}&{y}\end{array}]$,N=$[\begin{array}{l}{2}&{4}\\{-1}&{-1}\end{array}]$,若MN=$[\begin{array}{l}{0}&{2}\\{5}&{13}\end{array}]$,求矩陣M的逆矩陣M-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,$∠ACB=\frac{π}{6},BC=\sqrt{3},AC=4$,則AB等于(  )
A.$\sqrt{7}$B.3C.$\sqrt{11}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.執(zhí)行如圖所示的程序框圖,則輸出s的值等于( 。
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.將圓x2+y2-2x=0向左平移一個(gè)單位長度,再把所得曲線上每一點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)變?yōu)樵瓉淼?\sqrt{3}$倍得到曲線C.
(1)寫出曲線C的參數(shù)方程;
(2)以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知直線l的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=$\frac{3\sqrt{2}}{2}$,若A,B分別為曲線C及直線l上的動(dòng)點(diǎn),求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,設(shè)邊a,b,c所對(duì)的角分別為A,B,C,且a>c.已知△ABC的面積為$2\sqrt{2}$,$sin(A-B)+sinC=\frac{2}{3}sinA$,b=3.
(Ⅰ)求a,c的值;
(Ⅱ)求sin(B-C)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}x≥2\\ x+y≤4\\ 2x-y-m≤0\end{array}\right.$,若目標(biāo)函數(shù)z=2x+y的最大值為7,則m的最小值為5.

查看答案和解析>>

同步練習(xí)冊(cè)答案