分析 (1)與直線3x+7y+2=0垂直的直線的斜率為 $\frac{7}{3}$,令f′(1)=$\frac{7}{3}$,得m,又f(-1)=0,求出n;
(2)f′(x)=$\frac{1}{x+2}$-2x+4,由f′(x)=0,得x=$\frac{3\sqrt{2}}{2}$,然后求解極值與端點值,由此能求出以f(x)在[0,3]最小值.
解答 解:(1)與直線3x+7y+2=0垂直的直線的斜率為$\frac{7}{3}$,
令f′(1)=$\frac{7}{3}$,得m=4,
∵f(-1)=ln(2-1)-1-4+n=0,
∴n=5;
(2)f′(x)=$\frac{1}{x+2}$-2x+4,
由f′(x)=0,得x=$\frac{3\sqrt{2}}{2}$,
當x∈[0,$\frac{3\sqrt{2}}{2}$]時,f′(x)≥0,f(x)單調遞增;
當x∈($\frac{3\sqrt{2}}{2}$,3]時,f′(x)≤0,f(x)單調遞減.
∵f(0)=ln2+5,f(3)=ln5+8,
所以f(x)在[0,3]最小值為ln2+5.
點評 本題考查利用導數(shù)的性質求函數(shù)在閉區(qū)間上的最小值,解題時要認真審題,仔細解答,注意挖掘題設中的隱含條件,合理地進行等價轉化.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
甲班 | 10 | ||
乙班 | 30 | ||
合計 | 105 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | $\frac{11}{2}$ | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[{0,\frac{{\sqrt{3}}}{3}}]$ | B. | $[{0,\frac{{\sqrt{3}}}{2}}]$ | C. | $[{1,\frac{{\sqrt{3}}}{3}}]$ | D. | $[{0,\sqrt{3}}]$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com