17.已知p:?x∈R,cos2x-sinx+2≤m;q:函數(shù)$f(x)={({\frac{1}{3}})^{2{x^2}-mx+2}}$在[1,+∞)上單調(diào)遞減.
( I)若p∧q為真命題,求m的取值范圍;
( II)若p∨q為真命題,p∧q為假命題,求m的取值范圍.

分析 先求出命題p,q為真時(shí),m的取值范圍,
( I)若p∧q為真命題,求兩個(gè)范圍的交集即可得到m的取值范圍;
( II)若p∨q為真命題,p∧q為假命題,則p,q一真一假,進(jìn)而可得m的取值范圍.

解答 解:若p為真,
令f(x)=cos2x-sinx+2,則m≥f(x)min,
又f(x)=cos2x-sinx+2=cos2x-sinx+2=-2sin2x-sinx+3
又-1≤sinx≤1,
所以sinx=1時(shí),
f(x)min=0,
所以m≥0…(5分)
若q為真:
函數(shù)$y={({\frac{1}{3}})^{2{x^2}-mx+2}}$在[1,+∞)上單調(diào)遞減,
則$\frac{m}{4}≤1$,
所以m≤4…(6分)
(1)若p∧q為真,則p,q均為真,所以m∈[0,4]…(8分)
(2)若p∨q為真,p∧q為假,則p,q一真一假,即$\left\{{\begin{array}{l}{m≥0}\\{m>4}\end{array}}\right.$即m>4…(10分)
或$\left\{{\begin{array}{l}{m<0}\\{m≤4}\end{array}}\right.$即m<0
所以m的取值范圍為(-∞,0)∪(4,+∞)…(12分)

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了復(fù)合命題,恒成立問(wèn)題,指數(shù)函數(shù)的單調(diào)性等知識(shí)點(diǎn),難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.求下列函數(shù)的反函數(shù)
(1)y=$\root{3}{3x-5}$;(2)y=$\frac{1}{2}$(ex-e-x);(3)y=1+ln(x-1);(4)y=2sin$\frac{x}{3}$,x∈[-$\frac{π}{2}$,$\frac{π}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)全集為R,函數(shù)f(x)=$\sqrt{1-x}$的定義域?yàn)镸,則∁RM=( 。
A.(-∞,-1)B.[1,+∞)C.(1,+∞)D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)y=4x-6×2x+8,求該函數(shù)的最小值,及取得最小值時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知:函數(shù)f(x)=loga(2+x)-loga(2-x)(a>0且a≠1)
(Ⅰ)求f(x)定義域;
(Ⅱ)判斷f(x)的奇偶性,并說(shuō)明理由;
(Ⅲ)求使f(x)>0的x的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在公比為正數(shù)的等比數(shù)列{an}中,a3-a1=$\frac{16}{27}$,a2=-$\frac{2}{9}$,數(shù)列{bn}(bn>0)的前n項(xiàng)和為Sn滿足Sn-Sn-1=$\sqrt{S_n}+\sqrt{{S_{n-1}}}$(n≥2),且S10=100.
( I)求數(shù)列{an}和數(shù)列{bn}的通項(xiàng)公式;
( II)求數(shù)列$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.對(duì)于函數(shù)f(x)定義域中任意的x1,x2(x1≠x2)有如下結(jié)論
(1)f(x1+x2)=f(x1)f(x2)        
(2)f(x1•x2)=f(x1)+f(x2
(3)$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0              
(4)f($\frac{{x}_{1}+{x}_{2}}{2}$)<$\frac{f({x}_{1})+f({x}_{2})}{2}$
(5)f($\frac{{x}_{1}+{x}_{2}}{2}$)>$\frac{f({x}_{1})+f({x}_{2})}{2}$     
(6)f(-x)=f(x).
當(dāng)f(x)=lgx時(shí),上述結(jié)論正確的序號(hào)為(2)(3)(5).(注:把你認(rèn)為正確的命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lgx,x>0}\\{{x}^{-2},x<0}\end{array}\right.$,若f(x0)=1,則x0的值是10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.計(jì)算下列各式的值
(1)若a+a-1=4,則求a${\;}^{\frac{1}{2}}$+a${\;}^{-\frac{1}{2}}$的值
(2)已知2lg$\frac{x-y}{2}$=lgx+lgy,求log${\;}_{(3-2\sqrt{2})}$$\frac{x}{y}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案