在平面直角坐標系xOy中,曲線y=x2+2x-3與坐標軸的交點都在圓C上.
(Ⅰ)求圓C的方程;
(Ⅱ)若圓C被直線x-y+a=0截得的弦長為2
3
,求a的值.
分析:(I)求出曲線y=x2+2x-3與坐標軸的三個交點A、B、D的坐標,從而設出圓心C的坐標,根據(jù)|AC|=|BC|利用兩點間的距離公式列式,算出圓心為C(-1,-1),進而得出半徑r=
5
,可得圓C的方程;
(II)根據(jù)垂徑定理,算出點C到直線x-y+a=0的距離d=
2
,利用點到直線的距離公式建立關于a的等式,解之即可得到實數(shù)a的值.
解答:解:(I)曲線y=x2-2x-3與y軸的交點為A(0,-3),與x軸的交點為B(1,0)、D(-3,0).精英家教網(wǎng)
∵線段BD的垂直平分線為x=-1,
∴設圓C的圓心為(-1,b),
由|AC|=|BC|,得(0+1)2+(-3-b)2=(1+1)2+b2,解得b=-1.
由此可得圓心C(-1,-1),
圓C的半徑r=
(1-0)2+(-1+3)2
=
5
,
因此,圓C的方程為(x+1)2+(y+1)2=5.
(II)∵直線x-y+a=0被圓C截得的弦長為2
3
,
∴設點C到直線x-y+a=0的距離為d,
根據(jù)垂徑定理得2
r2-d2
=2
3
,
5-d2
=
3
,解得d=
2
(舍負).
∴點C(-1,-1)到直線x-y+a=0的距離為
|-1+1+a|
2
=
2
,
解得a=±2.
點評:本題給出拋物線與坐標軸的三個交點,求經(jīng)過此三點的圓的方程,并求被圓截得弦長為2
3
的直線方程,著重考查了圓的標準方程、點到直線的距離公式和直線與圓的位置關系等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xoy中,已知圓心在直線y=x+4上,半徑為2
2
的圓C經(jīng)過坐標原點O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個交點到橢圓兩焦點的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點,點P在圓C上,且滿足PF=4,求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在平面直角坐標系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點.若點A的橫坐標是
3
5
,點B的縱坐標是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,若焦點在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•泰州三模)選修4-4:坐標系與參數(shù)方程
在平面直角坐標系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設直線AC與BD的交點為P,求動點P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•東莞一模)在平面直角坐標系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設橢圓C的上下頂點分別為A1,A2,Q是橢圓C上異于A1,A2的任一點,直線QA1,QA2分別交x軸于點S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點A、B,且△OAB的面積最大?若存在,求出點M的坐標及對應的△OAB的面積;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案