【題目】已知集合A={0,1,2},B={z|z=x+y,x∈A,y∈A},則B=(
A.{0,1,2,3,4}
B.{0,1,2}
C.{0,2,4}
D.{1,2}

【答案】A
【解析】解:∵A={0,1,2},B={z|z=x+y,x∈A,y∈A},
①當(dāng)x=0,y=0;x=1,y=1;x=2,y=2時,x+y=0,2,4,
②當(dāng)x=0,y=1;x=1,y=2時,x+y=1,3,
③當(dāng)x=1,y=0;x=2,y=1時,x+y=1,3,
④當(dāng)x=0,y=2時,x+y=2,
⑤當(dāng)x=2,y=0時,x+y=2,
綜上,集合B中元素有:{0,1,2,3,4}.
故選:A.
【考點精析】通過靈活運用集合的表示方法-特定字母法,掌握①自然語言法:用文字?jǐn)⑹龅男问絹砻枋黾?②列舉法:把集合中的元素一一列舉出來,寫在大括號內(nèi)表示集合.③描述法:{|具有的性質(zhì)},其中為集合的代表元素.④圖示法:用數(shù)軸或韋恩圖來表示集合即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足: .

(1)若,求數(shù)列的通項公式;

(2)若.

求證:數(shù)列為等差數(shù)列;

記數(shù)列的前項和為,求滿足的所有正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】深圳市某校中學(xué)生籃球隊假期集訓(xùn),集訓(xùn)前共有6個籃球,其中3個是新球(即沒有用過的球),3個是舊球(即至少用過一次的球).每次訓(xùn)練,都從中任意取出2個球,用完后放回.
(1)設(shè)第一次訓(xùn)練時取到的新球個數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望;
(2)求第二次訓(xùn)練時恰好取到一個新球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知對任意的n∈N* , 存在a,b∈R,使得1×(n2﹣12)+2×(n2﹣22)+3×(n2﹣32)+…+n(n2﹣n2)= (an2+b)
(1)求a,b的值;
(2)用數(shù)學(xué)歸納法證明上述恒等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中, , 都是邊長為2的等邊三角形,設(shè)在底面的射影為

(1)證明:

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】f'(x)是函數(shù)f(x)的導(dǎo)函數(shù),f'(x)是函數(shù)f'(x)的導(dǎo)函數(shù).對于三次函數(shù)y=f(x),若方程f'(x0)=0,則點( )即為函數(shù)y=f(x)圖象的對稱中心.設(shè)函數(shù)f(x)= ,則f( )+f( )+f( )+…+f( )=(
A.1008
B.2014
C.2015
D.2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (常數(shù)a∈R).
(1)判斷函數(shù)f(x)的奇偶性,并證明;
(2)若f(1)=2,證明函數(shù)f(x)在(1,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=lnx﹣ 的零點所在的大致區(qū)間是(
A.(1,2)
B.(2,3)
C.(e,3)
D.(e,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集為實數(shù)集R,集合A={x|y= + },B={x|2x>4}
( I)分別求A∪B,A∩B,(UB)∪A
( II)已知集合C={x|1<x<a},若CA,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案