【題目】設(shè)函數(shù)f(x)=(x﹣a)(x﹣b)(x﹣c)(其中a>1,b>1),x=0是f(x)的一個零點(diǎn),曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,則a+b的最小值為

【答案】6
【解析】解:函數(shù)f(x)=(x﹣a)(x﹣b)(x﹣c)(其中a>1,b>1),x=0是f(x)的一個零點(diǎn),

可得f(0)=0,即﹣abc=0,可得c=0,

即f(x)=x(x﹣a)(x﹣b)=x3﹣(a+b)x2+abx,

f′(x)=3x2﹣2(a+b)x+ab,

由曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,

可得3﹣2(a+b)+ab=0,

即3+ab=2(a+b),

由a>1,b>1,可得ab≤( 2

當(dāng)且僅當(dāng)a=b取得等號,

即有2(a+b)≤3+( 2

解得a+b≥6或a+b≤2(舍去),

則當(dāng)且僅當(dāng)a=b=3時,取得最小值6.

所以答案是:6.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)關(guān)于的一元二次方程

(1)若是從0,1,2,3,4五個數(shù)中任取的一個數(shù),是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實(shí)根的概率;

(2)若是從區(qū)間上任取的一個數(shù),是從區(qū)間上任取的一個數(shù),求上述方程有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個結(jié)論: ① (x2+sinx)dx=18,則a=3;
②用相關(guān)指數(shù)R2來刻畫回歸效果,R2的值越大,說明模型的擬合效果越差;
③若f(x)是定義在R上的奇函數(shù),且滿足f(x+2)=﹣f(x),則函數(shù)f(x)的圖象關(guān)于x=1對稱;
④已知隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),P(ξ≤4)=0.79,則P(ξ<﹣2)=0.21;
其中正確結(jié)論的序號為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖為中國傳統(tǒng)智力玩具魯班鎖,起源于古代漢族建筑中首創(chuàng)的榫卯結(jié)構(gòu),這種三維的拼插器具內(nèi)部的凹凸部分(即榫卯結(jié)構(gòu))嚙合,外觀看是嚴(yán)絲合縫的十字立方體,其上下、左右、前后完全對稱,六根完全相同的正四棱柱分成三組,經(jīng)90°榫卯起來.現(xiàn)有一魯班鎖的正四棱柱的底面正方形邊長為1,欲將其放入球形容器內(nèi)(容器壁的厚度忽略不計),若球形容器表面積的最小值為30π,則正四棱柱體的高為(
A.
B.
C.
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣3)ex+ax,a∈R. (Ⅰ)當(dāng)a=1時,求曲線f(x)在點(diǎn)(2,f(2))處的切線方程;
(Ⅱ)當(dāng)a∈[0,e)時,設(shè)函數(shù)f(x)在(1,+∞)上的最小值為g(a),求函數(shù)g(a)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx,g(x)=x+ (x>0)都在x=x0處取得最小值.
(1)求f(x0)﹣g(x0)的值.
(2)設(shè)函數(shù)h(x)=f(x)﹣g(x),h(x)的極值點(diǎn)之和落在區(qū)間(k,k+1),k∈N,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為評估兩套促銷活動方案(方案1運(yùn)作費(fèi)用為5元/件;方案2的運(yùn)作費(fèi)用為2元/件),在某地區(qū)部分營銷網(wǎng)點(diǎn)進(jìn)行試點(diǎn)(每個試點(diǎn)網(wǎng)點(diǎn)只采用一種促銷活動方案),運(yùn)作一年后,對比該地區(qū)上一年度的銷售情況,制作相應(yīng)的等高條形圖如圖所示.
(1)請根據(jù)等高條形圖提供的信息,為該公司今年選擇一套較為有利的促銷活動方案(不必說明理由);
(2)已知該公司產(chǎn)品的成本為10元/件(未包括促銷活動運(yùn)作費(fèi)用),為制定本年度該地區(qū)的產(chǎn)品銷售價格,統(tǒng)計上一年度的8組售價xi(單位:元/件,整數(shù))和銷量yi(單位:件)(i=1,2,…,8)如下表所示:

售價x

33

35

37

39

41

43

45

47

銷量y

840

800

740

695

640

580

525

460

①請根據(jù)下列數(shù)據(jù)計算相應(yīng)的相關(guān)指數(shù)R2 , 并根據(jù)計算結(jié)果,選擇合適的回歸模型進(jìn)行擬合;
②根據(jù)所選回歸模型,分析售價x定為多少時?利潤z可以達(dá)到最大.

49428.74

11512.43

175.26

124650

(附:相關(guān)指數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè){an}是首項(xiàng)為1,公差為2的等差數(shù)列,{bn}是首項(xiàng)為1,公比為q的等比數(shù)列.記cn=an+bn , n=1,2,3,….
(1)若{cn}是等差數(shù)列,求q的值;
(2)求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(I)若α是第二象限角,且 的值;
(Ⅱ)求函數(shù)f(x)在[0,2π]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案