【題目】先閱讀下列結(jié)論的證法,再解決后面的問題:已知a1 , a2∈R,a1+a2=1,求證a12+a22≥ .
【證明】構(gòu)造函數(shù)f(x)=(x﹣a1)2+(x﹣a2)2
則f(x)=2x2﹣2(a1+a2)x+a12+a22
=2x2﹣2x+a12+a22
因?yàn)閷σ磺衳∈R,恒有f(x)≥0.
所以△=4﹣8(a12+a22)≤0,從而得a12+a22≥ ,
(1)若a1 , a2 , …,an∈R,a1+a2+…+an=1,請寫出上述結(jié)論的推廣式;
(2)參考上述解法,對你推廣的結(jié)論加以證明.
【答案】
(1)
解:若a1,a2,…,an∈R,a1+a2+…+an=1,
求證:a12+a22+…+an2≥
(2)
解:證明:構(gòu)造函數(shù)
f(x)=(x﹣a1)2+(x﹣a2)2+…+(x﹣an)2
=nx2﹣2(a1+a2+…+an)x+a12+a22+…+an2
=nx2﹣2x+a12+a22+…+an2
因?yàn)閷σ磺衳∈R,都有f(x)≥0,所以△=4﹣4n(a12+a22+…+an2)≤0
從而證得:a12+a22+…+an2≥
【解析】(1)由已知中已知a1 , a2∈R,a1+a2=1,求證a12+a22≥ ,及整個(gè)式子的證明過程,我們根據(jù)歸納推理可以得到一個(gè)一般性的公式,若a1 , a2 , …,an∈R,a1+a2+…+an=1,則a12+a22+…+an2≥ .(2)但此公式是由歸納推理得到的,其正確性還沒有得到驗(yàn)證,觀察已知中的證明過程,我們可以類比對此公式進(jìn)行證明.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的偶函數(shù)滿足,且當(dāng)時(shí), ,若在內(nèi)關(guān)于的方程恰有3個(gè)不同的實(shí)數(shù)根,則的取值范圍是 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子里有編號為的五個(gè)球,某位教師從袋中任取兩個(gè)不同的球. 教師把所取兩球編號的和只告訴甲,其乘積只告訴乙,讓甲、乙分別推斷這兩個(gè)球的編號.
甲說:“我無法確定.”
乙說:“我也無法確定.”
甲聽完乙的回答以后,甲又說:“我可以確定了.”
根據(jù)以上信息, 你可以推斷出抽取的兩球中
A. 一定有3號球 B. 一定沒有3號球 C. 可能有5號球 D. 可能有6號球
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)某種設(shè)備使用的年限x(年)與所支出的維修費(fèi)用y(元)有以下統(tǒng)計(jì)資料:
參考數(shù)據(jù): .參考公式:
如果由資料知y對x呈線性相關(guān)關(guān)系.試求:
(1) (2)線性回歸方程
(3)估計(jì)使用10年時(shí),維修費(fèi)用是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等比數(shù)列{an}的前n項(xiàng)和為Sn , 已知對任意的n∈N+ , 點(diǎn)(n,Sn)均在函數(shù)y=bx+r(b>0且b≠1,b,r均為常數(shù)的圖象上.
(1)求r的值.
(2)當(dāng)b=2時(shí),記bn=2(log2an+1)(n∈N+),證明:對任意的n∈N+,不等式成立 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中實(shí)數(shù)為常數(shù),為自然對數(shù)的底數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),解關(guān)于的不等式;
(3)當(dāng)時(shí),如果函數(shù)不存在極值點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=Asin(ωx+φ)在一個(gè)周期內(nèi)的圖象如圖,此函數(shù)的解析式為( )
A.y=2sin(2x+ )
B.y=2sin(2x+ )??
C.y=2sin( ﹣ )
D.y=2sin(2x﹣ )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1的各個(gè)頂點(diǎn)與各棱的中點(diǎn)共20個(gè)點(diǎn)中,任取2點(diǎn)連成直線,在這些直線中任取一條,它與對角線BD1垂直的概率為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com