【題目】小張于年初支出50萬(wàn)元購(gòu)買(mǎi)一輛大貨車(chē),第一年因繳納各種費(fèi)用需支出6萬(wàn)元,從第二年起,每年都比上一年增加支出2萬(wàn)元,假定該車(chē)每年的運(yùn)輸收入均為25萬(wàn)元.小張?jiān)谠撥?chē)運(yùn)輸累計(jì)收入超過(guò)總支出后,考慮將大貨車(chē)作為二手車(chē)出售,若該車(chē)在第x年年底出售,其銷(xiāo)售收入為25﹣x萬(wàn)元(國(guó)家規(guī)定大貨車(chē)的報(bào)廢年限為10年).
(1)大貨車(chē)運(yùn)輸?shù)降趲啄昴甑祝撥?chē)運(yùn)輸累計(jì)收入超過(guò)總支出?
(2)在第幾年年底將大貨車(chē)出售,能使小張獲得的年平均利潤(rùn)最大?(利潤(rùn)=累計(jì)收入+銷(xiāo)售收入﹣總支出)
【答案】
(1)解:設(shè)大貨車(chē)運(yùn)輸?shù)降趚年年底,該車(chē)運(yùn)輸累計(jì)收入與總支出的差為y萬(wàn)元,
則y=25x﹣[6x+x(x﹣1)]﹣50=﹣x2+20x﹣50(0<x≤10,x∈N)
由﹣x2+20x﹣50>0,可得10﹣5 <x<10+5
∵2<10﹣5 <3,故從第3年,該車(chē)運(yùn)輸累計(jì)收入超過(guò)總支出;
(2)∵利潤(rùn)=累計(jì)收入+銷(xiāo)售收入﹣總支出,
∴二手車(chē)出售后,小張的年平均利潤(rùn)為 =19﹣(x+ )≤19﹣10=9
當(dāng)且僅當(dāng)x=5時(shí),等號(hào)成立
∴小張應(yīng)當(dāng)在第5年將大貨車(chē)出售,能使小張獲得的年平均利潤(rùn)最大.
【解析】(1)先計(jì)算該車(chē)運(yùn)輸累計(jì)收入與總支出的差,再由題意可得含有x的不等式,解不等式可得答案;(2)先計(jì)算小張獲得的年平均利潤(rùn),再利用基本不等式可得小張獲得的年平均利潤(rùn)最大值,進(jìn)而可得答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的圖象與 的圖象的對(duì)稱(chēng)軸相同,則f(x)的一個(gè)遞增區(qū)間為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線(xiàn)C1的參數(shù)方程是 (φ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立坐標(biāo)系,曲線(xiàn)C2的坐標(biāo)系方程是ρ=2,正方形ABCD的頂點(diǎn)都在C2上,且A,B,C,D依逆時(shí)針次序排列,點(diǎn)A的極坐標(biāo)為(2, ).
(1)求點(diǎn)A,B,C,D的直角坐標(biāo);
(2)設(shè)P為C1上任意一點(diǎn),求t=|PA|2+|PB|2+|PC|2+|PD|2的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一塊以點(diǎn)O為圓心,半徑為2百米的圓形草坪,草坪內(nèi)距離O點(diǎn) 百米的D點(diǎn)有一用于灌溉的水籠頭,現(xiàn)準(zhǔn)備過(guò)點(diǎn)D修一條筆直小路交草坪圓周于A,B兩點(diǎn),為了方便居民散步,同時(shí)修建小路OA,OB,其中小路的寬度忽略不計(jì).
(1)若要使修建的小路的費(fèi)用最省,試求小路的最短長(zhǎng)度;
(2)若要在△ABO區(qū)域內(nèi)(含邊界)規(guī)劃出一塊圓形的場(chǎng)地用于老年人跳廣場(chǎng)舞,試求這塊圓形廣場(chǎng)的最大面積.(結(jié)果保留根號(hào)和π)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于n維向量A=(a1 , a2 , …,an),若對(duì)任意i∈{1,2,…,n}均有ai=0或ai=1,則稱(chēng)A為n維T向量.對(duì)于兩個(gè)n維T向量A,B,定義 .
(1)若A=(1,0,1,0,1),B=(0,1,1,1,0),求d(A,B)的值.
(2)現(xiàn)有一個(gè)5維T向量序列:A1 , A2 , A3…,若A1=(1,1,1,1,1)且滿(mǎn)足:d(Ai , Ai+1)=2,i∈N* . 求證:該序列中不存在5維T向量(0,0,0,0,0).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】公比為q(q≠1)的等比數(shù)列a1 , a2 , a3 , a4 , 若刪去其中的某一項(xiàng)后,剩余的三項(xiàng)(不改變?cè)许樞颍┏傻炔顢?shù)列,則所有滿(mǎn)足條件的q的取值的代數(shù)和為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=xlnx+(1﹣x)ln(1﹣x),x∈(0,1).
(1)求f(x)的最小值;
(2)若a+b+c=1,a,b,c∈(0,1).求證:alna+blnb+clnc≥(a﹣2)ln2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某科技公司生產(chǎn)一種手機(jī)加密芯片,其質(zhì)量按測(cè)試指標(biāo)劃分為:指標(biāo)大于或等于70為合格品,小于70為次品.現(xiàn)隨機(jī)抽取這種芯片共120件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如表:
測(cè)試指標(biāo) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
芯片數(shù)量(件) | 8 | 22 | 45 | 37 | 8 |
已知生產(chǎn)一件芯片,若是合格品可盈利400元,若是次品則虧損50元.
(Ⅰ)試估計(jì)生產(chǎn)一件芯片為合格品的概率;并求生產(chǎn)3件芯片所獲得的利潤(rùn)不少于700元的概率.
(Ⅱ)記ξ為生產(chǎn)4件芯片所得的總利潤(rùn),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù) ,
(1)求證: ;
(2)當(dāng)x≥1時(shí),f(x)≥lnx﹣a(x﹣1)恒成立,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com