(本題滿分12分)

如下圖,某地有三家工廠,分別位于矩形ABCD 的頂點(diǎn)A、B 及CD的中點(diǎn)P 處,已知AB=20km,CB =10km ,為了處理三家工廠的污水,現(xiàn)要在矩形ABCD 的區(qū)域上(含邊界),且與A、B等距離的一點(diǎn)O處建造一個(gè)污水處理廠,并鋪設(shè)排污管道AO、BO、OP ,設(shè)排污管道的總長(zhǎng)度為km.

(1)按下列要求寫(xiě)出函數(shù)關(guān)系式:         

①設(shè)∠BAO=(rad),將表示成的函數(shù);

②設(shè)OP(km) ,將表示成的函數(shù).

(2)請(qǐng)選用(1)中的一個(gè)函數(shù)關(guān)系式,確定污水處理廠的位置,使鋪設(shè)的排污管道總長(zhǎng)度最短.

 

【答案】

(1)①,

(2)

【解析】(1)①由條件知PQ 垂直平分AB,若∠BAO=(rad) ,則, 故,又OP=

所以,

所求函數(shù)關(guān)系式為       ………3分

②若OP=(km) ,則OQ=10-,

所以O(shè)A =OB=

所求函數(shù)關(guān)系式為       ………6分

(2)選擇函數(shù)模型①,

 ………8分

0 得sin ,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052020001871876714/SYS201205202002064687966343_DA.files/image015.png">,所以=,

當(dāng)時(shí), ,的減函數(shù);當(dāng)時(shí), ,的增函數(shù),所以函數(shù)=時(shí)取得極小值,這個(gè)極小值就是最小值.

這時(shí)(km)                         ………11分

因此,當(dāng)污水處理廠建在矩形區(qū)域內(nèi)且到A、B的距離均為(km)時(shí),鋪設(shè)的排污管道總長(zhǎng)度最短.                                           ………12分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,,

設(shè),數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分,第1小題6分,第2小題6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求AB;

(2) 若,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)

設(shè)函數(shù),為常數(shù)),且方程有兩個(gè)實(shí)根為.

(1)求的解析式;

(2)證明:曲線的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題

(本題滿分12分,(Ⅰ)小問(wèn)4分,(Ⅱ)小問(wèn)6分,(Ⅲ)小問(wèn)2分.)

如圖所示,直二面角中,四邊形是邊長(zhǎng)為的正方形,,上的點(diǎn),且⊥平面

(Ⅰ)求證:⊥平面

(Ⅱ)求二面角的大小;

(Ⅲ)求點(diǎn)到平面的距離.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案