【題目】如圖,在三棱臺中,,,,,,平面平面.
(Ⅰ)證明:平面;
(Ⅱ)求與平面所成角的正弦值.
【答案】(Ⅰ)見解析;(Ⅱ).
【解析】
(Ⅰ)證法一:在上取點(diǎn),使,連接、,證明出四邊形為平行四邊形,可得出,再利用線面平行的判定定理可證得平面;
證法二:在平面內(nèi)過點(diǎn)作,連接,證明出平面平面,再利用面面平行的性質(zhì)定理可得出平面;
(Ⅱ)連接,推導(dǎo)出平面,可得出,進(jìn)一步推導(dǎo)出平面,可得出,然后取的中點(diǎn),連接,推導(dǎo)出,過點(diǎn)作交于點(diǎn),連接,推導(dǎo)出平面,可得出為直線與平面所成的角,然后通過解三角形可解出的值.
(Ⅰ)證法一:在上取點(diǎn),使,連接、,
,,且,
由棱臺的性質(zhì)可知,
且,且,四邊形是平行四邊形,,
又平面,平面,平面;
證法二:在平面內(nèi)過點(diǎn)作,連接,
,又,且,
四邊形是平行四邊形,.
平面,平面,平面,
又,平面,平面,平面,
,平面平面,
平面,平面;
(Ⅱ)連接,在直角梯形中,,,
,,
又,,,
又平面平面,平面平面,平面,
平面,
平面,,
在中,,,,
由余弦定理得,,,
又,平面,
平面,,
取的中點(diǎn),連接,
且,四邊形為平行四邊形,則,
,,,
,.
過點(diǎn)作交于點(diǎn),連接,
平面,平面,,
,且,平面,
為與平面所成的角.
在中,,,
由余弦定理得,則,
,,
因此,與平面所成角的正弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1(﹣c,0),F2(c,0)分別為雙曲線1(a>0,b>0)的左、右焦點(diǎn),以坐標(biāo)原點(diǎn)O為圓心,c為半徑的圓與雙曲線在第二象限交于點(diǎn)P,若tan∠PF1F2,則該雙曲線的離心率為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,其中是實(shí)常數(shù).
(1)若,求的取值范圍;
(2)若,求證:函數(shù)的零點(diǎn)有且僅有一個(gè);
(3)若,設(shè)函數(shù)的反函數(shù)為,若是公差的等差數(shù)列且均在函數(shù)的值域中,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】基于移動互聯(lián)技術(shù)的共享單車被稱為“新四大發(fā)明”之一,短時(shí)間內(nèi)就風(fēng)靡全國,帶給人們新的出行體驗(yàn),某共享單車運(yùn)營公司的市場研究人員為了解公司的經(jīng)營狀況,對該公司最近六個(gè)月內(nèi)的市場占有率進(jìn)行了統(tǒng)計(jì),設(shè)月份代碼為x,市場占有率為y(%),得結(jié)果如下表
年月 | 2019.11 | 2019.12 | 2020.1 | 2020.2 | 2020.3 | 2020.4 |
x | 1 | 2 | 3 | 4 | 5 | 6 |
y | 9 | 11 | 14 | 13 | 18 | 19 |
(1)觀察數(shù)據(jù),可用線性回歸模型擬合y與x的關(guān)系,請用相關(guān)系數(shù)加以說明(精確到0.001);
(2)求y關(guān)于x的線性回歸方程,并預(yù)測該公司2020年6月份的市場占有率;
(3)根據(jù)調(diào)研數(shù)據(jù),公司決定再采購一批單車投入市場,現(xiàn)有采購成本分別為1000元/輛和800元/輛的甲、乙兩款車型,報(bào)廢年限不相同.考慮到公司的經(jīng)濟(jì)效益,該公司決定先對這兩款單車各100輛進(jìn)行科學(xué)模擬測試,得到兩款單車使用壽命統(tǒng)計(jì)如下表:
報(bào)廢年限 車輛數(shù) 車型 | 1年 | 2年 | 3年 | 4年 | 總計(jì) |
甲款 | 10 | 40 | 30 | 20 | 100 |
乙款 | 15 | 35 | 40 | 10 | 100 |
經(jīng)測算,平均每輛單車每年可以為公司帶來收入500元,不考慮除采購成本之外的其他成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,且用頻率估計(jì)每輛單車使用壽命的概率,以每輛單車產(chǎn)生利潤的期望值為決策依據(jù),如果你是該公司的負(fù)責(zé)人,你會選擇采購哪款車型?
參考數(shù)據(jù):,,,.
參考公式,相關(guān)系數(shù),回歸方程中斜率和截距的最小二乘估計(jì)公式分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐的底面為菱形,,,為的中點(diǎn),為上一點(diǎn),且,若,.
(1)求證:平面;
(2)求證:平面;
(3)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在平行四邊形中,,,,,分別為,的中點(diǎn).現(xiàn)把四邊形沿折起,如圖(2)所示,連結(jié),,.
(1)求證:;
(2)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,平面ABCD,,,,.
(1)求證:平面PAD;
(2)若E是PC的中點(diǎn),求直線BE與平面PAD所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,直線與圓相切.
(1)求橢圓的方程;
(2)過點(diǎn)的直線與橢圓交于不同兩點(diǎn),線段的中垂線為,求直線在軸上的截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校開設(shè)了射擊選修課,規(guī)定向、兩個(gè)靶進(jìn)行射擊:先向靶射擊一次,命中得1分,沒有命中得0分,向靶連續(xù)射擊兩次,每命中一次得2分,沒命中得0分;小明同學(xué)經(jīng)訓(xùn)練可知:向靶射擊,命中的概率為,向靶射擊,命中的概率為,假設(shè)小明同學(xué)每次射擊的結(jié)果相互獨(dú)立.現(xiàn)對小明同學(xué)進(jìn)行以上三次射擊的考核.
(1)求小明同學(xué)恰好命中一次的概率;
(2)求小明同學(xué)獲得總分的分布列及數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com