設函數(shù)f(x)的定義域為R,對任意實數(shù)x、y都有f(x+y)=f(x)+f(y),當x>0時f(x)<0,且f(3)=-4.
(1)求f(0),f(1)的值
(2)求證:f(x)為奇函數(shù);
(3)在區(qū)間[-9,9]上,求f(x)的最值.
(1)f(0)=0,f(1)=-4/3 (2)證明:令x=y=0,得f(0)=0 令y=-x,得f(0)=f(x)+f(-x),即f(-x)=-f(x) ∴f(x)是奇函數(shù) (3)解:1°,任取實數(shù)x1、x2∈[-9,9]且x1<x2,這時,x2-x1>0, f(x1)-f(x2)=f[(x1-x2)+x2]-f(x2)=f(x1-x2)+f(x2)-f(x1)=-f(x2-x1) 因為x>0時f(x)<0,∴f(x1)-f(x2)>0 ∴f(x)在[-9,9]上是減函數(shù) 故f(x)的最大值為f(-9),最小值為f(9). 而f(9)=f(3+3+3)=3f(3)=-12,f(-9)=-f(9)=12. ∴f(x)在區(qū)間[-9,9]上的最大值為12,最小值為-12. |
科目:高中數(shù)學 來源: 題型:
(09年東城區(qū)示范校質(zhì)檢一理)(14分)
設函數(shù)f(x)是定義在上的奇函數(shù),當時, (a為實數(shù)).
(Ⅰ)求當時,f(x)的解析式;
(Ⅱ)若上是增函數(shù),求a的取值范圍;
(Ⅲ)是否存在a,使得當時,f(x)有最大值-6.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源:2008年普通高等學校招生全國統(tǒng)一考試理科數(shù)學(上海卷) 題型:填空題
設函數(shù)f(x)是定義在R上的奇函數(shù),若當x∈(0,+∞)時,f(x)=lg x,則滿足f(x)>0
的x的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com